Effect Size & Statistical Power

When too much or too little can be bad things...
Statistical power

• Represents the power of a test to correctly reject the null hypothesis

• Varies with each test that you run

• Sample size is very important in driving power
Effect Size

• “A measure that allows one to judge the relative importance of a difference or relationship by reporting the size of the difference” relative to the sample size (error).

Chi-square:
Roughly 0.1 = small, 0.3 = medium, 0.5 = large effect size

Student’s t:
Roughly 0.2 = small, 0.5 = medium, 0.8 = large effect size
Effect Size

• A small effect size with large samples means power may be too high
 – Differences may be significant, but not important

• A large effect size small samples means that power may be too low
 – Differences may not be significant, but important
For Student’s t

• One sample Cohen’s d

$$d = \frac{|t|}{\sqrt{n}}$$

• Two sample Cohen’s d

$$d = \frac{\bar{x}_1 - \bar{x}_2}{S_{pooled}}$$

or

$$d = \sqrt{\frac{N_1 + N_2}{N_1 N_2}}$$
For Chi-Square

• For Goodness of Fit, Cohen’s w

$$w = \sqrt{\frac{X^2}{n}}$$

• For Test of Independence

$$\phi = \sqrt{\frac{X^2}{n}}$$
Summary

• If $p < \alpha$ and the samples are large, check for Effect Size
 – If effect size is LOW, the difference may not mean much
 • Test is too powerful

• If $p > \alpha$ and the sample is small, check for Effect Size
 – If effect size is HIGH, there may be a meaningful difference that was not detected
 • Test is not powerful enough

• The easiest way to manipulate power is by adjusting sample size