LAB 3. SCALE, WORKED EXAMPLES

1. How many kilometers would be represented by 5 cm at a scale of $1: 20,000$?

5 cm represents $5 \times 20,000 \mathrm{~cm}=100,000 \mathrm{~cm}=100,000 / 100,000=\underline{1 \mathrm{~km}}$. (remember that there are $100,000 \mathrm{~cm}$ in 1 km).
2. Using the representative fraction, calculate the straight-line distance in a) miles, b) kilometers, from point A to point B:

a) $\mathrm{RF}=1: 24,000$

Map distance A-B = 4.3 inches
Actual distance $=103,200$ inches $=103,200 / 63360=1.63$ miles (rounded to 2 decimal places).
(remember that there are 63360 inches in one mile).
b) $\mathrm{RF}=1: 24,000$

Map distance A-B = 11 cm
Actual distance $=264,000 \mathrm{~cm}=264,000 / 100,000=2.64 \mathrm{~km}$ (rounded to 2 decimal places).
3. At a scale of $1: 50,000$, a) how much area in square miles would be represented by a rectangle measuring 1 inch by 2 inches? b) how much area in square kilometers would be represented by a rectangle measuring 3 by 5 cm ?
a) 1 inch represents $1 \times 50,000$ inches $=50,000$ inches $=50,000 / 63360=0.789$ miles.

2 inches represents $2 \times 50,000$ inches $=100,000$ inches $=100,000 / 63360=1.58$ miles.
0.789 miles $\times 1.58$ miles $=\underline{1.23 \text { miles }^{2}}$
b) b) 3 cm represents $3 \times 50,000 \mathrm{~cm}=150,000 \mathrm{~cm}=150,000 / 100,000=1.5 \mathrm{~km}$.

5 cm represents $5 \times 50,000 \mathrm{~cm}=250,000 \mathrm{~cm}=250,000 / 100,000=2.5 \mathrm{~km}$.
$1.5 \mathrm{~km} \times 2.5 \mathrm{~km}=\underline{3.75 \mathrm{~km}^{2}}$

