LAB 2. WORKED EXAMPLES

Note: I've revised this and decided to use Lab 2, questions $1 \& 5$ as examples. 1. Find the length in meters of a minute of longitude on the map.

The difference in longitude between these two points is $2^{\prime} 30^{\prime \prime}$ or 2.5^{\prime}. Using a ruler measure the distance between these two points - it is 16.2 cm . We need the length of one minute, so we divide this by $2.5: 16.2 / 2.5=6.5 \mathrm{~cm}$. Use the graphic scale to determine the distance on the map (in meters) represented by 6.5 cm :

It is 1550 m (rounded to nearest 50 m).
2. At $60^{0} \mathrm{~N}$, one degree of longitude equals 55.8 km ; one degree of latitude equals 111 km . Using these equivalents, calculate the distance in km between the following locations:
$60^{\circ} 00^{\prime} 00^{\prime \prime} \mathrm{N}$

$133^{\circ} 22^{\prime} 45^{\prime \prime} \mathrm{W}$ to \quad| $60^{\circ} 00^{\prime} 00^{\prime \prime} \mathrm{N}$ |
| ---: |
| $136^{\circ} 30^{\prime} 50 " \mathrm{~W}$ |

LONGITUDE is changing. The amount of change is $3^{0} 8^{\prime} 5^{\prime \prime} .1^{0}=55.8 \mathrm{~km}$, therefore $3^{0} 8^{\prime} 5^{\prime \prime}=$ 3×55.8

+ $8 \times 55.8 / 60$
$+5 \times 55.8 / 3600$
$=167.4+7.44+0.0775=174.9175 \mathrm{~km}=\underline{174.918 \mathrm{~km} \text { (round to } 3 \text { decimal places) } . ~}$

3. What would be the distance in miles of the following distance where one longitude degree equals 45.2 miles:
$4^{0} 20^{\prime} 35^{\prime \prime}$? Answer $=4 \times 45.2$
$+20 \times 45.2 / 60$
$+35 \times 45.2 / 3600$
$=180.8+15.06666666667+0.4394444444444=196.3061111111$ miles $=\underline{196.306}$ miles.
4. Give precise longitude coordinates of the center of the landing field at Lake Dallas:

From Q. 1 above, we know that 1^{\prime} longitude $=6.5 \mathrm{~cm}$. Therefore the longitude will be $97^{\circ} 00^{\prime}+$ $5.6 / 6.5 \times 1^{\prime}$ or $97^{\circ} 00^{\prime}+5.6 / 6.5 \times 60^{\prime \prime}$
$=97^{\circ} 00^{\prime}+52^{\prime \prime}=\underline{97^{\circ} 00^{\prime} 52^{\prime \prime} \mathrm{W}}$ (Round to nearest second).
5. Give the 6-digit UTM grid reference for the following location:

The actual UTM reference for the point is 668800 m east, 3237300 m north. By convention, for a 6 -digit UTM reference this is written as 688373 (note that the easting is always given first).
6. What is found at the following UTM grid reference: 697379

The answer is a cave.
7. How many kilometers a) east and b) north are between UTM references 123456 and 333777 ?

We know that two zeros have been left off of these 6-digit UTM references; we must return the two zeros to calculate the distances:
a) easting separation $=33300-12300 \mathrm{~m}=21000 \mathrm{~m}=\underline{21 \mathrm{~km}}$.
b) northing separation $=77700-45600 \mathrm{~m}=32100 \mathrm{~m}=\underline{32.1 \mathrm{~km}}$.

