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Abstract. Three-dimensional (3D) shape signatures based on the distance distribution of random point 

pairs are introduced and the effectiveness evaluated using computer simulations and samples of oak 

and Douglas fir canopies selected from Light Detection and Ranging (LiDAR) point clouds and Digital 

Surface Models (DSMs). The results suggest that comparison of 3D canopy shapes can be effectively 

reduced to the comparison of frequency distributions of distances between random points, and that it is 

more computationally efficient when shape signatures are derived from raster surfaces. The results also 

suggest that the statistically-based 3D shape signatures are relatively insensitive to noise and other 

small local variations, which is important for canopy shape analysis in real-world environments.  
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2.  Methods 

 

2.1 Three-dimensional shape signatures 

 

Osada et al. (2002) described a method for computing 3D shape signatures and dissimilarity measures 

for arbitrary objects. The basic idea is to transform an arbitrary 3D object into a parameterized function 

that can easily be compared with others (Figure 1). A 3D shape signature is represented as a probability 

distribution (called shape distribution) sampled from a shape function measuring geometric properties 

of the 3D object. In the research by Osada et al. (2002), five shape functions were proposed. However, 

only one function, D2, is used in this study due to length limitations. D2 measures the distance between 

two random points on the 3D surface. After a certain number of iterations (e.g., 10000) for D2 

calculation, the sorted distances are put into 50 histogram bins to show the frequency distribution, 

which can be further converted to probability distribution. The properties of the 3D shape signatures 

include invariance, robustness, efficiency, and generality (Osada et al., 2002). 

where h is the amplitude of fluctuation, and t is a random number between 0 and 1. h(t - 0.5) is used to 

add random fluctulations to the z values, so that simulated points are distributed on or near the 

intended surface. Each model was then run five times, and 10000 random point pairs (a total of 20000 

points) were generated for distance calculation in each run. It can be seen that the 3D shape signatures 

for the three models are quite different (figure 3). 

2.2 Computer simulations 

 

To test if the shape signatures can reveal differences between objects through random points on or near 

the object surfaces, computer simulations were carried out using three simple geometric models: cone, 

hemisphere, and half-ellipsoid (figures 2a, 2b, and 2c). For a random point (x, y) in 2-D Euclidean 

space, the z value of the point in 3D can be calculated using the following equations:  

3.  Results and discussions 

 

3.1 Results from LiDAR point clouds 

 

Figure 4 shows the LiDAR points for an oak tree and Douglas fir displayed in 2-D and 3D. Points near 

the ground were removed based on the elevation histograms, leaving 1791 oak canopy points and 2251 

Douglas fir canopy points for analysis. 3D shape signatures for the oak and Douglas fir canopies were 

calculated using 1000 random point pairs (figure 6a), 5000 random point pairs (figure 6b), and 10000 

random point pairs (figure 6c), respectively. Calculations for each canopy were repeated five times. It 

can be seen that oak and Douglas fir can be well separated using their 3D shape signatures generated 

from 5000 random point pairs (figure 6b) and 10000 random point pairs (figure 6c). While some 

differences between the two canopies are visible from the shape signatures generated using 1000 

random point pairs, the signatures are not stable. The results suggest that 3D shape signatures can 

reveal the differences between the two canopies when enough random point pairs (for example, at least 

two times the number of LiDAR points) are used for distance calculation.    

Figure 8 is a comparison of processing times using point clouds (2251 points for a Douglas fir canopy) 

and a raster surface (30 x 30 cells with 0.5 m resolution) for the same canopy on a computer with 2.53 

GHz Duo CPU processor and 4 GB RAM. It can be seen that calculation of 3D shape signatures is 

computationally very efficient for both point data and raster data, and raster data seem to be more 

efficient than point data. 

To further demonstrate the performance of the 3D shape signatures in separating two different types of 

canopies, five oak canopies (red polygons) and five Douglas fir canopies (green polygons) were 

manually delineated from the 0.5-m resolution DSM (figure 9). It can be seen that the 3D shape 

signatures of the two groups have distinct differences (figure 10). 

Based on the above results, some relevant discussions are presented below. 

 

• Dissimilarity of 3D shape signatures. As expected, the shape signature of Douglas fir is similar to that 

of the half-ellipsoid in Figure 2, while the shape signature of oak is closer to that of a hemisphere. 

Through 3D shape signatures, the comparison of 3D canopy shapes is successfully reduced to the 

comparison of frequency distributions which is much easier. Although the dissimilarity measures are 

not discussed here due to length limitations, they can be implemented easily to provide quantitative 

measures of differences in 3D shape signatures. 

 

• Sensitivity of 3D shape signatures. It is believed that the statistical nature of the 3D shape signatures 

in this study makes them relatively insensitive to noise and other small local variations, which also 

explains why the shape signatures from raster surfaces are similar to those from point clouds even 

though raster surfaces are less accurate than original point clouds. This property is important for 

canopy shape analysis because small portions of adjacent canopies are often included during canopy 

shape signature analysis.  

 

• Automated feature extraction. To test the effectiveness of 3D shape signatures in discriminating 

different tree canopy shapes, manually selected/delineated canopies are used in this study. Progress has 

been made to incorporate 3D shape signature analysis into automated canopy extraction procedures, 

which will be reported in a separate paper.  

 

4.  Conclusions 

 

Three-dimensional shape signatures based on the distance distribution of random point pairs are 

presented and the effectiveness of the signatures evaluated using computer simulations, LiDAR point 

clouds, and LiDAR-derived digital surface models. The results from samples of oak and Douglas fir 

canopies suggest that comparison of 3D canopy shapes can be effectively reduced to the comparison of 

frequency distributions of distances between random points. The results also indicate that the 

statistically-based 3D shape signatures are relatively insensitive to noise and other small local 

variations, which is important for canopy shape analysis in real-world environments. The 3D shape 

signatures are computationally very efficient, and have potential to be incorporated into automated 

feature extraction procedures for LiDAR data analysis. 
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Figure 6. 3D shape signatures for the oak and Douglas fir canopies calculated from point clouds 

using (a) 1000 random point pairs, (b) 5000 random point pairs, and (c) 10000 random point pairs. 

Figure 5. 0.5-m resolution DSMs for 

oak (a) and Douglas fir (c). Combined 

3D views of point clouds and DSMs (b 

and d) are also shown for comparison. 

Figure 4. LiDAR points for an oak tree and a 

Douglas fir displayed in 2-D and 3D. The 

color scheme (from blue to red) shows the 

LiDAR intensity levels (from low to high). 

Figure 7. 3D shape signatures for the oak and Douglas fir canopies calculated from DSMs using (a) 

1000 random point pairs, (b) 5000 random point pairs, and (c) 10000 random point pairs. 

Figure 8. Comparison of 

processing time between 

2251 points and 30 x 30 

cells for Douglas fir. 

Figure 9. Oak (red polygons) and Douglas 

fir (green polygons) canopies delineated 

from DSM. 

Figure 10. 3D shape signatures for the oak 

and Douglas fir canopies calculated from 

samples shown in Figure 9 using 10000 

random point pairs. 

Figure 3. 3D shape signatures of 

three geometric models. 

Figure 2. Three geometric models and simulated 

random points (h = 0.1, θ = 30). 

3.2 Results from LiDAR-derived digital surface models 

 

Since raster DSMs are often created from LiDAR point clouds, it is natural to question if DSMs can be 

used to for 3D shape signature analysis. Figure 5 shows the 0.5-m resolution DSMs for the same 

canopies shown in figure 4. It seems that many details in the point clouds were lost after conversion to 

DSMs through spatial interpolation. However, as can be seen in figure 7, the 3D shape signatures 

derived from the DSMs show similar results compared with those from the point clouds.  

Figure 1. Shape distribution and shape matching of 3D objects (Adapted from Osada et al., 2002). 

1.  Introduction 

 

Three-dimensional shape description is a basic requirement for tree canopy characterization, which is 

important for a variety of natural resource management and monitoring activities, including biomass 

estimation, biodiversity monitoring, wildlife habitat assessment, and wildfire risk assessment. Although 

numerous shape measures have been proposed in the fields of computer vision, graphics, pattern 

recognition, and machine intelligence in the last decades (Danielsson 1978, Gosh 1988, Kartikeyan and 

Sarkar 1989, Rosin 2003, Bribiesca 2008), the application of these measures in other areas such as 

geography, forestry, and ecology has been relatively limited. In recent years, many researchers have 

studied tree height, crown width, basal area, crown base height, and crown volume using LiDAR data 

(Alexlsson 1999, Lim et al. 2003, Moffiet et al. 2005, Koch et al. 2006, Lee and Lucas 2007, Kim 

2008, Popescu and Zhao 2008, Kato et al. 2009). However, few studies have focused on automated 

characterization of 3D canopy shapes using LiDAR data (Omasa et al. 2007, Kato et al. 2009). A 

review of the measurement of these canopy parameters using LiDAR can be found in Kato et al. 

(2009).   

 

Inspired by the work of Osada et al. (2002) on computing 3D shape signatures for arbitrary objects in 

computer graphics, this study aims to evaluate the effectiveness of 3D shape signatures for 

characterizing individual tree canopies derived from LiDAR data. Computer software tools were 

designed and implemented using Microsoft Visual Basic and ESRI’s ArcObjects to process both vector 

and raster data. The high resolution LiDAR data were collected on March 29, 2007 by the 

GeoEarthScope Northern California LiDAR project (Prentice et al. 2009). A 1000 m by 1000 m tile in 

the Soquel Demonstration State Forest near Santa Cruz, California was selected as the study area. The 

tile has over 9.6 million LiDAR points (about 9.6 points per square meter) and a 0.5-m resolution 

digital surface model (DSM) created using kriging interpolation of the points. Both the LiDAR point 

clouds and the DSM were downloaded from the Geosciences Network (GEON) via the GEON portal at 

the San Diego Supercomputer Center.  
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