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Based on the triangulated irregular network (TIN) model, barycentric coordinates
and random points, a new method was developed for more accurate character-
ization of 3D shape signatures of buildings using Light Detection and Ranging
(LiDAR) data and Geographic Information System (GIS). The new method was
applied to four simulated building models with flat, pent, gable and hip roofs to
test the detection of changes in 3D building shapes in a post-earthquake scenario:
(1) a three-storey building model becomes two-storey after losing the first floor;
(2) a severe damage of a two-storey building model; and (3) a total collapse of a
two-storey building model. The new method was then applied to real LIDAR data
from four buildings in Harris County, TX, USA. All the changes in 3D shapes of
the models and real buildings were successfully detected using 3D shape signatures.
Sensitivity analyses were carried out to test the influence of LiDAR point density
and new points in TIN triangles on 3D shape signatures. The results suggest that
LiDAR point density of 0.5 point m~2 or higher can generate stable 3D shape sig-
natures of buildings, and that the density of the new points in TIN triangles does
not affect 3D shape signatures significantly. Built upon the new method and results,
a framework was proposed for an automated assessment of post-earthquake build-
ing damage using geospatial data. A flowchart was presented to provide more
details of the framework, and the advantages and limitations of the framework
were also discussed. It is expected that the framework can be effectively applied
to post-earthquake building damage assessment and other disaster scenarios that
involve major changes in 3D building shapes.

1. Introduction

Earthquakes can cause destruction and take human lives by structurally damaging
buildings and dwellings, and causing other disasters such as fires and tsunamis. Since
1980, there have been eight strong earthquakes with deaths over 10 000: Mexico (1985),
Armenia (1988), Iran (1990), Turkey (1999), Indian Ocean (2004, earthquake and
tsunami), South Asia (2005), China (2008) and Haiti (2010). After a catastrophe like
a strong earthquake, one of the top priorities is to start search and rescue operations
for people trapped in wrecked buildings. Space- and airborne sensors have been used
to identify and assess natural disasters like earthquakes in the last decades. Although
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real-time support for ground search and rescue is still a difficult task for current remote
sensing systems, it is hoped that data from space- and airborne platforms can provide
important information for rescue and recovery efforts. Therefore, timely assessment of
building damage is essential for earthquake recovery programmes.

A few studies have been conducted on post-carthquake building damage assess-
ment using remotely sensed images (Aoki et al. 1998, Huyck et al. 2002, Matsuoka
and Yamazaki 2002, Yusuf et al. 2002, Adams 2004, Saito et al. 2004, Adams et al.
2005, 2006, Kaya et al. 2005). Kaya et al. (2005) compared building collapse estimates
derived from pre-earthquake and post-earthquake SPOT (Satellite Pour ’Observation
de la Terre) HRVIR (high resolution visible and infrared) data from the 1999 Izmit,
Turkey earthquake with government statistics, and found that the results for the pro-
portion of collapsed buildings were similar. However, building damage estimation
at the individual building level is difficult because the spatial resolution of SPOT
images was not high enough for detecting damages to many buildings. Since 2002,
high-resolution images such as QuickBird and IKONOS images have been used for
earthquake damage assessment (Chiroiu et al. 2002, Adams et al. 2004). It seems
that the time-consuming visual interpretation methods are still the major methods
for building damage assessment, partly because traditional image classification meth-
ods cannot be directly applied to high-resolution images. Turker and Sumer (2008)
developed a building-based earthquake damage assessment system in MATLAB
(Mathworks, Natick, MA, USA) using watershed segmentation of the post-event
aerial images and GIS and tested the system with data from Golcuk, an area hit
by the 1999 Izmit, Turkey earthquake. The system successfully provided a detection
rate of 63.3% for damaged buildings, and 87.3% for undamaged buildings. However,
since the watershed segmentation method is based on building shadows which can be
very complex, they also reported several limitations of this method. Indeed, building
shadows can be difficult to detect if the buildings are close to one another, and if the
illumination conditions are poor.

The all-weather capability of radar systems, along with other features, provides an
important option for building damage assessment in bad weather. Guo et al. (2009)
conducted research on detecting collapsed urban buildings using air- and spaceborne
synthetic aperture radar (SAR) data after the 2008 Wenchuan earthquake (magni-
tude scale (M) 8.0) in China. Since pre-ecarthquake SAR data were not available in
the area, they focused on detecting collapsed buildings using post-earthquake SAR
data alone. Their results show that longer wavelength SAR data (such as L-band)
have better performance than shorter wavelengths in detecting collapsed buildings, but
results from multi-polarization spaceborne SAR data are more complex due to varia-
tions in building type, material and structure. Wang et al. (2009) used high-resolution
(0.5 m) airborne X-band SAR images for the interpretation of building damage after
the 2008 Wenchuan earthquake, China. They concluded that, without Interferometric
Synthetic Aperture Radar (InSAR) data, it is very difficult to detect damaged build-
ings even with high-resolution SAR images. Dong et al. (2011) used 10 m resolution
Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic
Aperture Radar (PALSAR) images and 1 m resolution TerraSAR-X images to extract
earthquake damage information after the My 8.0 Wenchuan earthquake, China. Based
on change detection using pre- and post-earthquake SAR images, they found that high
spatial resolution images such as 1 m resolution TerraSAR-X images can provide use-
ful information on areas of building damage. It should be noted, however, that radar
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layover effects and shadows can hamper the interpretation of SAR images, particularly
in mountain environments.

Visual interpretation of optical and SAR images is helpful in building damage
assessment, but the process is labour-intensive because automated identification of
damaged buildings is difficult using optical or SAR images alone. Sometimes, visual
interpretation of optical images may not detect major changes in the 3D shapes of
buildings. For example, after the 2008 Wenchuan earthquake of magnitude 8.0 in
China, many buildings in the downtown area of Beichuan County lost the first floors
but still appeared intact on SAR images (Wang et al. 2009). In such cases, it would be
very difficult to make accurate assessment of building damage using optical or radar
images. Photogrammetric methods may be useful, but data collection and processing
can be time-consuming. InSAR could be an alternative data source because of its abil-
ity to provide elevation data, but the data quality and the elevation accuracy derived
from InSAR are not as high as those of Light Detection and Ranging (LiDAR) data
(Stilla and Jurkiewicz 1999, Stilla et al. 2003).

LiDAR point clouds are usually pre-processed to create a digital elevation model
(DEM) and a digital surface model (DSM). The difference between DSM and DEM
is called normalized digital surface model (nDSM), which represents the height of
ground objects such as buildings and trees. Figure 1 is an example of nDSM in
Port-au-Prince, Haiti, obtained from the LiDAR data collected after the 2010 Haiti
earthquake with a density of 2 points m~2. The red circles in figure 1 represent

Figure 1. A normalized digital surface model (nDSM) in Port-au-Prince derived from Light
Detection and Ranging (LiDAR) data collected after the 2010 Haiti earthquake. Red circles
show damaged buildings interpreted from air photos.

Source: Original data were obtained with permission from the Chester Carlson Center for
Imaging Sciences at the Rochester Institute of Technology (RIT).
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the locations of severely damaged buildings interpreted from aerial photographs.
While the nDSM clearly shows the height distribution of the buildings, the example
indicates that it is difficult to interpret damaged buildings from post-earthquake
LiDAR data alone without pre-earthquake LiDAR data or 3D building information
from GIS databases.

Extracting buildings from remotely sensed data has become a significant research
field in the last two decades. Many algorithms for building extraction have been pro-
posed, including mathematical morphology (Weidner and Forstner 1995, Pesaresi and
Benediktsson 2001), DSM segmentation (Baltsavias et al. 1995, Sithole and Vosselman
2004, Tovari and Pfeifer 2005), active contours or snakes (Nixon and Aguado 2002,
Oriot 2003, Ahmadi et al. 2010, Kabolizade et al. 2010), Dempster—Shafer method
(Rottensteiner et al. 2005), neural networks (Barsi 2004, Bellman and Shortis 2004),
knowledge-based systems (Baltsavias 2004, Mayer 2008) and multi-scale method (Vu
et al. 2009). A review of most of the methods can be found in Ioannidis ez al. (2009).
With the increasing demand of 3D city models and availability of LiDAR data,
3D building reconstruction has received extensive attention, and many method for
building reconstruction have been proposed (Gruen 1998, Haala and Brenner 1999,
Maas and Vosselman 1999, Stilla and Jurkiewicz 1999, Stilla et al. 2003, Suveg and
Vosselman 2004, Brenner 2005, Madhavan ez al. 2006, Sugihara and Hayashi 2008,
Alexander et al. 2009, Jang and Jung 2009, Pu and Vosselman 2009, Tang et al. 2010).
Meanwhile, building damage assessment based on building reconstruction and image
classification has become a research topic. Li et al. (2008) proposed a method for
building damage assessment based on building reconstruction using IKONOS images
and LiDAR data. However, their method assumed that both pre-earthquake and
post-earthquake LiDAR data are available, which might be difficult in many cases.
Chen and Hutchinson (2010) proposed a probabilistic classification method for image-
based urban structural damage identification using bi-temporal satellite images. They
also identified future research needs regarding building-level assessment through an
automated workflow.

In addition to the progress in building extraction from remotely sensed data,
developments in web technology have shown some new trends in geospatial data
infrastructure in recent years. While spatial data infrastructure (SDI) has been mainly
a top-down, government-driven initiative, a bottom-up path involving geospatial
professionals and expert amateurs has emerged (Gould 2006). Introductions and
more in-depth analyses of volunteered geographic information (VGI) (Goodchild
2007, Elwood 2008, Flanagin and Metzger 2008) and NeoGeography (Turner 2006,
Goodchild 2009) are beginning to appear. Grassroots citizens can now make contri-
butions to the global geospatial data infrastructure. For example, Internet users can
create 3D models of individual buildings for many cities in the world using Google
Building Maker, save the 3D models in the Google warehouse and share the models
with other users.

Given that information on pre-earthquake 3D shapes of buildings is available from
geospatial databases as building parameters or 3D building models, and that pre-
earthquake LiIDAR data may not be available, the challenge is to detect major damages
to buildings using existing geospatial data and post-earthquake LiDAR data in an
automated process. The objectives of this research are (1) to develop an effective and
efficient approach to detecting changes of 3D building shapes using simulated build-
ing models and real LiDAR data; and (2) to propose a framework for automated
assessment of post-earthquake building damage using geospatial data.
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2. Automated detection of changes in 3D building shapes
2.1 3D shape signatures

Osada et al. (2002) described a method for computing 3D shape signatures and dissim-
ilarity measures for arbitrary objects in computer graphics. The basic idea behind 3D
shape signatures is to transform an arbitrary 3D object into a parameterized function
that can easily be compared with other objects. A 3D shape signature is represented as
a probability distribution sampled from a shape function measuring geometric prop-
erties of the 3D object. In the work of Osada et al. (2002), five shape functions were
proposed. Dong (2009, 2010) used one function, D2, to measure the distance between
two random points selected from LiDAR point clouds of individual tree crowns. After
a certain number of iterations (e.g. 10 000) for D2 calculation, the sorted distances
between the point pairs are put into 50 histogram bins to show the frequency distribu-
tion, which can be further converted into a probability distribution. The probability
distribution is then used as the 3D shape signatures of the object. It has been shown
that 3D shape signatures can effectively describe 3D shapes of tree crowns (Dong 2009,
2010). In §2.2, 3D shape signatures of simulated building models will be calculated to
support automated detection of changes in 3D building shapes.

2.2 3D shape signatures of simulated building models

Four common 3D building models with flat, pent, gable and hips roofs were generated
as raster surfaces similar to nDSMs derived from LiDAR data and were referred to
as ‘two-storey models’ (see the middle column in figure 2). The footprint size of the
models is 14 x 24 m, and the heights of the two-storey models are different: flat roof
— 5 m; pent roof: 5-10 m; gable roof: 5-12 m; and hip roof: 5-12 m. In addition, three
sets of models were also generated to test the detection of changes in 3D shapes in
different building damage scenarios: (1) three-storey models (see the first column in
figure 2) — these models were 3 m higher than the two-storey models and were used
to study changes in 3D building shapes when a three-storey building loses the first
floor and becomes a two-storey building; (2) damaged models (see the third column
in figure 2) — severe damage of two-storey models; and (3) collapsed models — total
collapse of two-storey models into debris with random variation of thickness between
1 and 2 m (not shown in figure 2).

A LiDAR point density of 2 points m~2 is used to generate random points on build-
ing roofs and footprint boundary for 3D shape signature analysis. Each model was run
3 times for 3D shape signature calculation. In previous research (Dong 2009, 2010),
it has been shown that 10 000 point pairs should be enough for generating stable 3D
shape signatures for tree crowns. Because real buildings may have different sizes and
shapes, 100 000 random point pairs were used for distance calculation in each model
run. Comparisons of 3D shape signatures for the building models are shown in fig-
ure 3. As can be seen in figure 3, the 3D shape signatures generated from 100 000
random point pairs are very stable (the three curves from three model runs are almost
identical). From the correlation coefficients (r) of the 3D shape signatures, it can be
seen that the differences between the three-storey models and the two-storey models,
and between the two-storey models and collapsed models are relatively easy to tell.
However, there are only subtle differences (r > 0.99) between two-storey models and
damaged models.
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Figure 2. Simulated 3D building models with flat (first row), pent (second row), gable (third
row) and hips roofs (fourth row). First column: three-storey models; second column: two-storey
models; third column: damaged models. Models for total collapse are not shown here.

An explanation on the similarity between the 3D shape signatures of two-storey
models and damaged models is that damaged two-storey buildings only involve par-
tial change in heights compared with the original two-storey buildings, whereas the
change from three-storey models to two-storey models and from two-storey models to
collapsed models involves significant changes in building heights, resulting in reduced
frequencies of relatively long distances between random point pairs. This can also
be seen from the 3D shape signatures (probability functions) in the first and third
columns of figure 3. In addition, the lack of sampling points on walls and other ver-
tical faces may also affect the frequency distribution of distances between point pairs
when a certain number of iterations (such as 100 000) are used to collect the random
point pairs. Therefore, it is anticipated that differences between the original two-storey
building models and the damaged building models can be better revealed if the points
on vertical faces are also used for 3D shape signature analysis. Based on this idea, a
new approach is proposed in §2.3.
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Figure 3. Comparisons of 3D shape signatures obtained from the building models in figure 2.
First row: flat roofs; second row: pent roofs; third row: gable roofs; and fourth row: hip roofs.
First column: three-storey models (red) vs. two-storey models (black); second column: two-
storey models (black) vs. damaged models (green); third column: two-storey models (black) vs.
collapsed models (blue). r is the correlation coefficient between the 3D shape signature curves
of two models.

2.3 A new approach based on TIN models and barycentric coordinate system

In GIS, 3D data are usually presented using contours, raster surfaces or triangulated
irregular networks (TINs). To obtain random sampling points from vertical or near
vertical faces of the buildings models in figure 2, the TIN data model is the only option
because (1) contours cannot present vertical faces, and (2) rasters can show vertical
faces as edges where cell values jump from low to high, but data on the vertical or
nearly vertical faces cannot be represented by rasters.

In the TIN model, triangles are created from a set of points through Delaunay tri-
angulation. Given a 2D or 3D triangle with vertices p;, p, and ps3, any point p in the
triangle can then be specified by a weighted sum of these three vertices, that is,
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p=nup+hLp+1i3p3, (1)

where t; + 1, + t3 = 1. 11, t, and 5 are called barycentric coordinates (Bradley 2007),
and each of which indicates how much relative influence the corresponding triangle
vertex contributes to the location of the point p. If the 3D Cartesian coordinates of py,
P2, p3 and p are (x1, y1, z1), (X2, ¥2, 22), (X3, ¥3, z3) and (x, y, z), respectively, x, y, z can
be calculated using the following equations:

x=tx1+hx+( -1 —1n)xs, (2
y=tuyi+thy+{1—-1t—1)ys, (3)
22[121+1222+(1—11—12)Z3. (4)

Once the three vertices are obtained for each triangle in a TIN model, random points
can be generated in the triangle using equations (2)—(4). In other words, random points
can be created anywhere on the TIN surface, including vertical walls of the original
building models and vertical faces of damaged buildings. This allows more represen-
tative sampling of the 3D shape because every part (except the bottom plane) of
the building is covered with data points. In computer implementation, ¢; and ¢, are
random numbers between 0 and 1. If #; + # > 1, then ¢ is replaced with 1 — 71,
and 1, replaced withl — ;. This ensures that barycentric coordinates will be uni-
formly distributed in the triangle (instead of creating clusters). Figure 4 is a flowchart
showing the process from data input to 3D shape signature analysis for each build-
ing. Random points on the rooftop (Py) and along the footprint boundary (Py)
are used to generate TIN models. Based on the point density calculated from the
rooftop points, new points (Pr) are generated in each TIN triangle. Finally, Py, Pn
and Pt are combined for 3D shape signature analysis. Figure 5 shows selected TIN
models and random data points for two-storey flat and gable building models and

’ Get nDSM | | Get building footprint polygon |

v v

Generate M random points Generate N random
within polygon: Py(x, », z), points along polygon
z values are from nDSM boundary: Py(x, », 0)
Calculate point density Generate TIN using

D = M/(polygon area) Py(x, 3, z) and Py(x, », 0)

v v

Based on D, generate new points Pr(x, », z) in TIN
triangles using barycentric coordinate system

v

Combine Py(x, », z), Py(x, », 0) and P(x, y, )
for 3D shape signature analysis

Figure 4. Flowchart of 3D shape signature analysis for each building.
Note: TIN, triangulated irregular network; nDSM, normalized digital surface model.
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Figure 5. New random points generated using the triangulated irregular network (TIN) model
and barycentric coordinates. (¢) Original flat roof model, (b) damaged flat roof model, (c)
original gable roof model and (d) damaged gable roof model.

their damaged versions. As can be seen in figure 5, new random points were gener-
ated on vertical and near-vertical faces of the building, as if the building models are
covered with a digital ‘blanket’ and random points are available on the surface of
the blanket.

Using this new approach, new 3D shape signatures of the building models were
calculated (figure 6). Point density D is set to 2 points m~? in each model. Like the
old approach in §2.2, each model was run 3 times for 3D shape signature calculation,
and 100 000 random point pairs were used for distance calculation in each model run.
Compared with figure 3, it can be seen that the building models were well separated in
all tested damage situations: (1) a three-storey building becomes two-storey due to the
loss of the first floor; (2) severe damage of a two-storey building; and (3) total collapse
of a two-storey building.

This new method was implemented using Microsoft Visual Basic for Applications
(VBA) with ESRI’s ArcObjects 9.3 in the ArcGIS 9.3 software. In terms of processing
time, it takes about 0.9 s to process 2000 points on a desktop computer with 2.53 GHz
processor and 4 GB RAM, including generation of random points (<0.1 s), creation of
TIN (about 0.2 s), calculation of barycentric coordinates (about 0.2 s) and calculation
of 3D shape signatures using 100 000 random point pairs (about 0.4 s). In other words,
the 3D shape signatures of each building in figure 5 can be obtained in less than 1 s,
which is very promising for real-world applications such as post-earthquake building
damage assessment.
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Figure 6. Comparisons of 3D shape signatures obtained from the building models in figure 2
using the triangulated irregular network (TIN) model and barycentric coordinate system. First
row: flat roofs; second row: pent roofs; third row: gable roofs; and fourth row: hip roofs. First
column: three-storey models (red) vs. two-storey models (black); second column: two-storey
models (black) vs. damaged models (green); third column: two-storey models (black) vs. col-
lapsed models (blue). r is the correlation coefficient between the 3D shape signature curves of
two models.

2.4 Results from real LiDAR data for 3D buildings

Buildings in the real world may be more complex than the four basic models in figure 2,
but the new method in §2.3 can still be applied to LiDAR data for real buildings. Since
it is difficult to find sample buildings that have pre-earthquake 3D information and
post-earthquake LiDAR data, a small LIDAR data set in Harris County, TX, USA
was used for 3D shape signature analysis of real buildings. Although the data set was
not related to post-earthquake building damage, it can be used to demonstrate the
performance of 3D shape signatures in revealing changes in 3D building shapes. In
figure 7(a), the upper part shows a TIN model built from LiDAR data for six build-
ings, and the lower part is an air photo of the six buildings. The LiDAR point density



Automated assessment of post-earthquake building damage 91

L SALUR e S

SAlRER L Sy —— Building 1

' i\' (A, e o2 R\ = g% ----Building 5
i T‘ N L —— Building 2
0.03 ----Building 4

Probability
o
5

0.01 1

0.00

0 5 10 15 20 25 30 35 40 45
Distance bin ID

®

Figure 7. 3D shape signature analysis using Light Detection and Ranging (LiDAR) data for
selected buildings in Harris County, TX, USA. («) Triangulated irregular network (TIN) model
built from LiDAR (top), and air photo (bottom); the numbers in brackets are the building
numbers. (b) 3D shape signatures derived from LiDAR data of selected buildings.

Table 1. Correlation coefficients between 3D shape signatures of
selected buildings.

Building 1 ~ Building2  Building4  Building 5

Building 1 1 0.8702 0.9271 0.9962
Building 2 0.8702 1 0.9902 0.8726
Building 4 0.9271 0.9902 1 0.9308
Building 5 0.9962 0.8726 0.9308 1

Note: Bold numbers show high correlation coefficients between the
building models of the same type.

is approximately 0.8 point m~2. The 3D shape signatures derived from the LiDAR
data for buildings 1, 2, 4 and 5 are shown in figure 7(b), and the correlation coeffi-
cients between the 3D shape signatures are listed in table 1. The results from 3D shape
signature analyses are in accord with those from visual interpretation of the air photo:
buildings 1 and 5 are the same model, while buildings 2 and 4 belong to a different
model. This example shows that major changes in 3D building shapes can be detected
by 3D shape signatures obtained from LiDAR data. Following the same logic, if pre-
earthquake 3D shape signatures of a building are known, it is possible to detect severe
damage or collapse of the building by comparing its pre-earthquake 3D shape signa-
tures with post-earthquake 3D shape signatures derived from LiDAR data. This also
means that only post-carthquake LiDAR data collection is required if pre-earthquake
3D shape signatures are available from other sources such as 3D building models and
GIS databases.

3. Sensitivity analyses

In §2.4, results from simple building models with rectangular footprints and real build-
ings with complex footprints are discussed. These results were based on a random
sampling density of approximately 2 points m~2. This brought up two important ques-
tions: (1) Do 3D shape signatures of buildings change with LiDAR point density?
(2) Are 3D shape signatures of buildings seriously affected by the new data points
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generated in TIN triangles? Sensitivity analyses were carried out to answer these
questions.

Because of its relatively complex shape compared with the other three building
models, the hip roof model (figure 2(k)) was selected for the sensitivity test. Simulated
LiDAR points were collected from the hip roof with the point density D = 0.1, 0.25,
0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5 and 5.0 points m~2. TIN models were then
generated from the simulated LiIDAR points and random points inside the building
footprint and TIN triangles using the new method described in §2.4. Finally, 3D shape
signatures were calculated from the points for the building model using 100 000 random
point pairs. Table 2 shows the correlation coefficients between the 3D shape signatures
(figure 8(a)) when LiDAR point density D changes from 0.1 to 5.0 point m~2. It can be
seen that the 3D shape signatures are highly correlated, with correlation coefficients
over 0.99 except a few numbers that are slightly less than 0.99 when D = 0.1 or 0.25
points m~2. Figure 8(h) shows the 3D shape signatures when LiDAR point density is
0.5 point m~2 or higher, with corresponding correlation coefficients highlighted in the
shaded area of table 2. The results suggest that 3D shape signatures of buildings do
not change with LIDAR point density significantly if the LIDAR point density is over
a certain level. Because buildings in the real world can be more complex than the hip
roof model, it is suggested that a minimum LiDAR point density of 0.5 point m~2 is
used for 3D shape signature analysis for post-earthquake building damage assessment.

The effects of new data points generated in TIN triangles on the 3D shape signatures
of buildings were also studied using the LiDAR data for Building 1 in figure 7. New
points were generated in TIN triangles so that point density changed from the original
0.8 point m~2 to 1.0, 2.0, 3.0, 4.0 and 5.0 points m~2, respectively. The model was run
3 times at each point density level. The 3D shape signatures are shown in figure 8(c),
and the correlation coefficients between the 3D shape signatures are listed in table 3.
These results show that if the LIDAR point density (0.8 point m~2 in this case) is
sufficient for 3D shape signature analysis of buildings, the density of the new data
points generated in TIN triangles do not change 3D shape signatures of buildings
significantly. However, as described in §2.4, these generated data points are necessary
for better chararacterization of 3D building shapes.

4. A framework for automated assessment of post-earthquake building damage

Built upon the literature review in §1, the methods in §2 and the results in §3, a frame-
work is proposed for automated assessment of post-earthquake building damage using
LiDAR data and GIS. Compared with the tiered reconnaissance system proposed
by Adams et al. (2004), this framework focuses on per-building (Tier 3) assessment.
Assessment at regional (Tier 1) and neighbourhood (Tier 2) levels can be incorporated
later to form a broader framework. The current framework has four major com-
ponents (figure 9): (1) post-earthquake LiDAR data collection and pre-processing;
(2) building database and analysis tools in GIS; (3) building damage detection based
on 3D shape signatures; and (4) automated GIS database updating.

A flowchart is illustrated in figure 10 to better describe the framework. The input
to the flowchart comes from two different sources: (1) post-earthquake LiDAR data
and (2) building information from existing GIS databases. In addition to building foot-
prints, the GIS databases should have pre-earthquake 3D shape signatures, or relevant
3D building models and parameters that can be used to calculate 3D shape signa-
tures. For simple buildings with rectangular footprints such as the four models used
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Figure 8. Sensitivity analyses of 3D shape signatures. () 3D shape signatures of the hip roof
model when Light Detection and Ranging (LiDAR) point density changes from 0.1 to 5.0 point
m~2; (b) 3D shape signatures of the hip roof model when LiDAR point density changes from 0.5
to 5.0 point m~2; and (¢) 3D shape signatures of Building 1 in figure 7 when the point density

changes from 1 to 5.0 points m~2.

Table 3. Correlation coefficients between the 3D shape signatures in figure 8(c).

D=1.0 D=20 D=30 D=40 D=50
D=1.0 1 0.9957 0.9987 0.9982 0.9971
D=20 0.9957 1 0.9945 0.9980 0.9935
D=3.0 0.9987 0.9945 1 0.9981 0.9972
D=40 0.9982 0.9980 0.9981 1 0.9927
D=5.0 0.9971 0.9935 0.9972 0.9927 1

Note: D, point density
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Figure 9. A framework for automated assessment of post-earthquake building damage using
Light Detection and Ranging (LiDAR) data and Geographic Information System (GIS).

in §2.2, a 3D model for the building can be built on-the-fly in computer memory once
the building parameters such as maximum roof height, minimum roof height, roof
type (flat, pent, gable and hip) and ridge length (for hip roofs) are retrieved from the
GIS database, thereby 3D shape signatures of the building can be obtained in less
than 1 s (see test results on processing time in §2.3). For complex buildings such as
those in figure 7, 3D shape signatures or 3D models developed from AutoCAD draw-
ings, aerial images, previous LIDAR and other sources can be stored in GIS. The 3D
shape signatures of each complex building can also be calculated in less than 1 s. The
pre-earthquake 3D shape signatures are compared with post-earthquake 3D shape
signatures derived from LiDAR data using correlation coefficients, and a threshold
Rt is used to detect severely damaged (or collapsed) buildings. From the models and
samples described in §3, it seems that Rt can be set to 0.99, but users can adjust this
threshold based on field observations. As can be seen in figure 10, the process of detect-
ing damaged/collapsed buildings is designed as an automated loop structure, until all
buildings are processed. The damaged/collapsed building IDs can be automatically
updated in the GIS database for rapid generation of maps and reports.
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Figure 10. Flowchart for automated assessment of post-earthquake building damage.
Note: GIS, Geographic Information System; TIN, triangulated irregular network; DEM, digital
elevation model; DSM, digital surface model.
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5. Discussions and conclusion

Five major advantages and two limitations of the proposed frameowrk are discussed
below:

1. The framework would work in a more straightforward way if both pre-
earthquake and post-earthquake LiDAR data sets are available. If pre-
earthquake LiIDAR data are not available, the framework will need 3D building
information from GIS databases. In rural and sub-urban areas of developing
countries, many buildings have relatively simple shapes — usually the four mod-
els used in this study. This means updating pre-ecarthquake building databases
with basic building parameters (roof type, maximum roof height and minimum
roof height) through field work might be more cost-effective than building 3D
models from pre-earthquake high-resolution images and/or LiDAR data. In
such cases, efforts of building 3D models can be focused on buildings with
more complex 3D shapes. With the emergence of digital earth concepts and
infrastructure, it is expected that more and more 3D buidling information can
be used to support the framework.

2. The use of LiDAR data in the framework eliminated many limitations of pre-
vious methods for building damage assessment using optical or SAR images.
For example, the loss of the first floors of buildings is a common damage type
in strong earthquakes, and there is no effective way for rapid detection of this
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type of damage using optical or SAR images. As demonstrated in this article,
the loss of the first floors of buildings can be effectively detected using 3D shape
signatures derived from LiDAR data and GIS. With the support of GIS, each
individual building is automatically assessed following the building footprints,
which also excludes background clutter effects.

Since the calculation of 3D shape signatures involves a large number of random
point pairs (100 000 pairs in this study) for each building, the results are less
sensitive to noise and small changes in 3D shapes. For example, Building 1 in
figure 7 has an extra fence segment on the left side of the front yard whereas
Building 5 does not have such a feature. Even though the fence segment is visi-
ble in LiDAR data, it does not have major influence on the 3D shape signatures,
and the two buildings that were made from the same model still have very close
3D shape signatures. The relatively insensitive property of 3D shape signatures
also suggests that minor modifications in 3D building shapes (such as the pres-
ence or absence of chimneys and solar panels) do not change the 3D shape
signatures of the buildings significantly.

Similar to (3) above, 3D shape signatures should be relatively tolerant to
inaccuracies of building parameters in GIS databases. For example, the 3D
shape signatures of a flat building with actual roof height of 3.8 m might not
change significantly if the height was estimated and input in the GIS database
as 4 m. However, the relationships between geospatial database accuracy
(including misalignment between pre- and post-earthquake LiDAR data if pre-
earthquake LiDAR data are available) and 3D shape signatures of buildings
could be a separate topic for further research.

The proposed framework can be made fully automated once the input data
are available. The processing speed of approximately one building per second
is very promising for building damage assessment following disasters in large
geographic areas. With improvements in computing power and algorithm opti-
mization, it is possible that the processing speed can be improved. In addition,
it is possible to reduce the number of random point pairs from 100 000 to
50 000 to further improve the procesing speed while keeping the effectiveness
of the methods.

Because of the reason discussed in (3), one limitation of 3D shape signatures
derived from LiDAR and GIS data for building damage assessment is that
minor damages to buildings may not be detected. However, this limitation
should not be a major problem because a top priority after earthquakes is to
detect severely damaged or collapsed buildings and to save people’s lives in a
timely manner.

Finally, for areas with heavy tree canopy coverage, building footprints in GIS
databases may not match features in LiDAR data because a building may
be partly or totally covered with tree branches. Effective extraction of roof
surfaces covered with tree branches remains a future research topic.

In this article, a new method was proposed for more accurate characterization of
3D shape signatures of buildings. The new method involves normalized digital sur-
face models derived from LiDAR data, TIN generation and random points in TIN
triangles generated with barycentric coordinates. The new method was applied to
four simulated basic building models to test the detection of changes in 3D build-
ing shapes in a post-earthquake scenario: (1) a three-storey building model becomes
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two-storey after losing the first floor; (2) severe damage of a two-storey building
model; and (3) total collapse of a two-storey building model. The new method
was then applied to real LIDAR data from four buildings in Harris County, TX,
USA. All the changes in 3D shapes of the models and real buildings were success-
fully detected using 3D shape signatures. Sensitivity analyses were carried out to
test the possible influence of LiDAR point density and new points in TIN trian-
gles on 3D shape signatures. The results suggest that LiIDAR point density of 0.5
point m~2 or higher can generate stable 3D shape signatures of buildings, and that
the density of the new points in TIN triangles does not affect 3D shape signatures
significantly.

Based on these results, a framework was proposed for automated assessment of
post-earthquake building damage using geospatial data. A flowchart was presented to
provide more details of the framework. The advantages of the framework include its
insensitivity to noise and small variations in 3D building shapes, tolerance to inaccu-
racies in GIS databases, cost-effectiveness in rural and sub-urban areas of developing
countries, fully automated process and computational efficiency. Although the frame-
work cannot detect minor damages to buildings, this limitation should not be a major
issue because a top priority in a post-earthquake scenario is to detect severely dam-
aged or collapsed buildings in a timely manner. Due to the lack of real world data sets
with both 3D building information in GIS databases and post-earthquake LiDAR
data, large-scale case studies were not provided in this article, and further research is
needed in this direction. Nonetheless, enough details of the solutions and supportive
results were provided using simulated buildings models and real LIDAR data for build-
ings. It is expected that the framework can be effectively applied to post-earthquake
building damage assessment and other disasters that involve major changes in 3D
building shapes.
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