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This paper presents methods and results of small-area population estimation using

a combined Light Detection And Ranging (LiDAR), Landsat Thematic Mapper

(TM) and parcel dataset for a study area in Denton, Texas, USA. A normalized

digital surface model (nDSM) was created from a digital surface model (DSM) and

a digital elevation model (DEM) built from LiDAR point data. Residential and

commercial parcels were selected from parcel data and used as a mask to remove

non-residential and non-commercial pixels from the nDSM. Classification results

of residential areas from Landsat TM images acquired on two dates were used to

further refine the nDSM. Using continuous and random census blocks as samples,

building count, building area and building volume were calculated from the nDSM

through mathematical morphological operations, zonal statistics, data conversion

and spatial joining in a geographic information system (GIS). Combined with

census 2000 data, a total of 10 ordinary least squares (OLS) regression models and

geographically weighted regression (GWR) models were built and applied to the

census blocks in the study area. Finally, accuracy assessments were carried out.

The results show that the sign and magnitude of the relative estimation errors at the

census-block level lead to underestimation of the total population in the study

area. Possible reasons for the relatively low accuracies and problems for further

investigation are also discussed.

1. Introduction

To support land-use planning and better understanding the complex interactions
between human and the environment, it is essential to estimate population distribu-

tion in a timely and efficient manner. Traditionally, population information is mainly

obtained through a census, which is time consuming, labour intensive and expensive.

Many national census agencies and international organizations use four methods to

update census data and estimate population size (Smith and Mandell 1984): (1)

component II (COMP-II) – using vital statistics such as birth and death data to

measure the natural increase from the last census, (2) ratio-correlation (R-CORR) –

using regression methods to relate changes in population to changes in indicators of
population change, such as school enrolment, the number of voters, the number of

passenger car registrations and the number of occupied housing units, (3) adminis-

trative record (AD-REC) – using births, deaths, school enrolment, social insurance,

building permits, driver licences, voter registration and tax returns to estimate popu-

lation size and (4) cohort component method – tracing people born in a given year

through their lives.
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From the above methods, it seems that ratio-correlation is the only method in

which remote sensing can play a role for population estimation using image spectral

and spatial information. Since the 1970s, remotely sensed data from various platforms

have been used for population estimation, including low-spatial-resolution image

data (Welch and Zupko 1980, Sutton et al. 1997, 2001), medium-spatial-resolution
Landsat Thematic Mapper (TM) images (Harvey 2002a,b, 2003, Lo 2003, Qiu et al.

2003, Wu and Murray 2003, Wu 2004, Li and Weng 2005, Lu et al. 2006) and high-

spatial-resolution aerial photographs (Lo and Welch 1977, Lo 1986a,b). In Sutton

et al. (1997), nighttime satellite images were used for estimating population density for

the continental US. The application of nighttime images was extended to the estima-

tion of global human population (Sutton et al. 2001). Qiu et al. (2003) used Landsat

TM images and Topologically Integrated Geographic Encoding and Referencing

(TIGER) system road data for modelling urban population growth. Lu et al. (2006)
derived impervious surface information from Landsat TM images for population

estimation. In terms of algorithms, while ordinary least squares (OLS) regression is a

popular method, some other methods such as kriging (Wu and Murray 2003) have

also been used for population estimation. To deal with the spatial non-stationarity

problem in population estimation, Lo (2008) investigated the application of geogra-

phically weighted regression (GWR) models for population estimation in Atlanta and

produced more accurate results than using OLS models. In recent years, population

estimation in emergencies has become a new application area of remote sensing and
geographic information systems (GISs) (Henderson 2006, Stone 2008). Based on the

reviews by Lo (1986b) and Wu et al. (2005), existing population methods using remote

sensing and GISs can be put into two general categories: areal interpolation and

statistical modelling (figure 1).

From existing literature, it seems that Landsat TM images are a popular choice for

population estimation, mainly because of their relatively rich spectral information for

mapping land-cover types and moderate spatial resolution to cover large study areas.

For population estimation at census-block group or census-block level, Landsat TM
has two major limitations: (1) the spatial information is not high enough and (2) the

Areal interpolation
(use census data as input)

Population estimation
using GIS/RS

Statistical modelling
(use census data for model
training and assessment)

With ancillary data

Without ancillary data

Population versus urban areas

Population versus land uses

Population versus image spectral values

Population versus dwelling units

Population versus other physical and
socioeconomic variables

Figure 1. Methods of population estimation using a geographic information system (GIS)
and remote sensing (RS).
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lack of elevation information to separate spectrally similar objects. For example, gas-

well pads in Texas may not be separated from buildings on a Landsat TM image. With

the ability to provide elevation information, Light Detection And Ranging (LiDAR)

data have been widely used in topographic mapping and forest-structure modelling,

among other applications. The potential of building extraction from LiDAR data to
support population estimation has been mentioned in several papers (e.g. Wu et al.

2005, Lu et al. 2006). In recent years, many papers have been published on high-

resolution satellite image and LiDAR data analysis (Zhou et al. 2004, Bork and Su

2007, Brandtberg 2007, Koetz et al. 2007, Sohn and Dowman 2007, Antonarakis et al.

2008, Xie et al. 2008, Aubrecht et al. 2009, Chen et al. 2009). While most of the papers

address the issue of information extraction using spatial information or elevation

information, further investigations of the extracted information for real-world applica-

tions remain limited. Evaluation of LiDAR data for population estimation would be an
important addition to traditional remote-sensing methods in this application field.

This paper presents an evaluation of LiDAR, Landsat TM and parcel data for

small-area population estimation. A small area can be defined as a subcounty area

such as census tracts, block groups and blocks, and the areas that can be aggregated

from them. Numerous studies have been carried out for small-area population

estimation using traditional demographic characteristics (Verma et al. 1984, Platek

et al. 1987, Bracken 1991, Wolter and Causey 1991, Verma 1992, Cai 2007, Jarosz

2008). According to figure 1, this study belongs to the statistical modelling category
with a focus on population versus dwelling units derived from LiDAR, Landsat TM

and parcel data. The major objective is to test if a combination of LiDAR, Landsat

TM and parcel data provide accurate population estimations for small areas. The

basic ideas is to build OLS and GWR models based on sampling census blocks using

(1) population versus building count, (2) population versus building area and (3)

population versus building volume, and evaluate the models for population estima-

tion with support from census 2000 data.

2. Study area and data

The study area is located in the eastern part of the City of Denton, Texas. The area has

8 census tracts, 30 census-block groups and 764 census blocks (figure 2).

Data for this study include (1) Landsat TM images acquired on 4 March 2000 and

10 July 2000, (2) LiDAR data acquired during leaf-on season (4 September 2001), (3)

parcel data of Denton County and (4) census 2000 data. The purpose of using Landsat

TM images of two dates in spring and summer is to obtain more accurate land-cover
classification to support population estimation. LiDAR data were post-processed

through clustering and filtering and output as ASCII text files for ground and off-

ground points with a point spacing of 3–5 m (unfortunately, the original LiDAR point

clouds were not available). Parcel data are maintained by the Central Appraisal

District of Denton County and pre-2000 (including 2000) parcels are selected from

the whole dataset. Finally, census 2000 data were used to build regressions models

based on sampling census blocks and to evaluate the accuracy of the estimated

population. Figure 3 shows the above datasets. Figure 4 shows continuous and
random census blocks selected for developing regression models.
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3. Methodology

The methodology flowchart is shown in figure 5, and some major steps are briefly

described below.

(1) Landsat TM image classification. Landsat TM images of 12 bands (two dates,

30 m � 30 m resolution) were used as input for land-use/land-cover classifica-

tion. Maximum likelihood classification was conducted using training samples

for residential areas, commercial / industrial / transportation (CIT) areas, soils,

vegetation and water. 256 random sample points were selected for

classification-accuracy assessment. An overall accuracy of 80.2% was obtained.

(2) LiDAR data processing. Twenty-nine tiles of LiDAR text files for digital eleva-
tion models (DEMs) and digital surface models (DSMs) were imported into

ArcGIS to create point-shape files and converted to rasters with 1 m � 1 m cell

size by inverse distance weight (IDW) interpolation. The LiDAR dataset with 1

m � 1 m cell size were created for a separate study using LiDAR and 1 m

resolution IKONOS images. Although the 1 m � 1 m cell size is finer than the

LiDAR point spacing of 3–5 m in this study and does not contain more informa-

tion than a 3 m� 3 m cell (MacEachren and Davidson 1987, Chow and Hodgson

2009), no efforts were made to resample the LiDAR dataset to a coarser cell size.
A DEM mosaic and a DSM mosaic were created from the rasters. A normalized

digital surface model (nDSM) (Aubrecht et al. 2009, Hill and Broughton 2009)

was obtained by subtracting the DEM from the DSM. Theoretically, nDSM

values are from zero to the maximum height of the surface features. Because the

LiDAR points were post-processed to create a point spacing of 3–5 m, noise

pixels were obvious on the nDSM. These noise pixels were removed by grey-scale

closing operations in mathematical morphology, using structural elements of 3�
3 pixels for dilation operation followed by erosion operation (Dong 1997). Based
on the Manufactured Home Construction and Safety Standards published by the

Figure 2. Location of the study area.

5574 P. Dong et al.



Texas Department of Housing & Community Affairs (TDHCA 2009), a thresh-

old of 2.2 m was used to separate buildings and trees from other ground objects.

Pixels lower than 2.2 m on the nDSM were set to zero.

(3) Creation of the final nDSM map. Using pre-2000 (including 2000) residential

and commercial parcels as the first mask (parcel mask) and residential pixels

N

N N

N

10 2 4 km10 2 4 km

10 2 4 km 10 2 4 km

(a) Landsat TM

(c) Parcel map (d) Census data

(b) LiDAR nDSM

Figure 3. Datasets used in the study: (a) Landsat TM, (b) normalized digital surface model
(nDSM) derived from LiDAR data, (c) parcel map and (d) census tracts are shown in different
colours.
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from Landsat TM image classification as the second mask (TM mask), the final

nDSM was created by removing cells outside the masks. Since the LiDAR data

were collected on 4 September 2001 (17 months after the census 2000), the use of

the parcel mask and the TM mask can also help eliminate buildings that were

built after 2000 when creating the final nDSM.

(4) Building area, volume and count derived from nDSM. Based on the final

nDSM, a binary raster can be created in which non-zero values in the input

nDSM will be output as 1, while other values in the input nDSM will be output
as 0. Using census blocks as zones and the binary raster as input raster, a zonal

sum can be calculated for each census block using zonal statistics. This zonal

sum is the building area of that census block because the cell size is 1 m � 1 m.

Similarly, using census blocks as zones and the final nDSM as the input raster,

building volume can be obtained by calculating zonal sum in each census block.

Building count is obtained by converting the buildings in the nDSM to poly-

gons (polygons with an area less than 10 m2 were removed) and joining building

centroids to census-block shapefile through spatial joining. After that, the
number of buildings in each block is readily available.

(5) Development of regression models. A total of 10 regression models were created

based on census 2000 population data and independent variables for building

count, building area and building volume: (i) three OLS regression models

derived from building count, building area and building volume of 91 contin-

uous census blocks (see figure 4(a)), (ii) three OLS regression models derived

from building count, building area and building volume of 91 random census

blocks (see figure 4(b)), (iii) one multiple linear-regression model developed
using building count and building area as independent variables from the 91

random census blocks (it was found that building area is highly correlated with

building volume, therefore building volume was not used as an independent

Figure 4. Sampling census blocks for regression analysis: (a) 91 continuous samples and
(b) 91 random samples.
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variable for multiple linear regression) and (iv) three GWR models derived

from building count, building area and building volume of the 91 random

census blocks.

(6) The basic idea of GWR for modelling heterogeneous processes is that para-

meters may be estimated anywhere in the study area given a dependent variable

(population) and a set of one or more independent variables (building count,
building area and building volume) measured at known locations. A GWR

model can be expressed as (Lo 2008):

Yi ¼ ai0
þ
Xn

k¼1

aikxik þ ei ði ¼ 1; 2; . . . ; nÞ; (1)

where Yi and xik are the dependent and independent variables at i, k¼ 1, 2, . . .,
n, ei are normally distributed error terms (with zero mean and constant variance

at point i) and aik are the values of the kth parameters at locations i. In this

Landsat TM images:
2000/03/04 (6 bands)
2000/07/10 (6 bands)
Maximum likelihood
Classification for land
use and land cover

LiDAR Data:
1. Spatial interpolation to create LiDAR DSM and DEM
2. Normalized DSM: nDSM = DSM − DEM
3. Mathematical morphology for nDSM smoothing
4. Image thresholding to remove low-height objects
5. Mathematical morphology for removing small objects

Parcel
data

Residential class derived from
12-band landsat TM images

(Residential map)

LiDAR-derived buildings
and grouped trees

(nDSM map)

Pre-2000 residential
and commercial parcels

(Parcel map)

Remove non-residential pixels
from nDSM map

Obtain residential and commercial
buildings from nDSM map

Extract individual buildings
in sampling blocks

Final nDSM map for
population estimation

Conversion to points and spatial joining

Number of buildings
in each census block

Area of buildings
in each census block

Volume of buildings
in each census block

Census 2000
data

Zonal statistics in sampling blocks

10 linear regression models and geographically weighted regression models
(Count versus Population, Area versus Population, Volume versus Population)

Continuous samples and random samples of census blocks

Apply regression models to all
census blocks for population estimation

Accuracy assessment

Data sources

Processes

Figure 5. Flowchart of population estimation using GIS and remotely sensed data.
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study, adaptive kernels are used and the bandwidth is determined using cross

validation (CV). More details of GWR models can be found in Fotheringham

et al. (2002), Lo (2008) and ESRI (2009).

(7) Accuracy assessment. Accuracy assessment is an important step in population

estimation using remote sensing and GISs. Similar to Lu et al. (2006), here we
use three measures for accuracy assessment:

relative error : RE ¼ ðPe � PgÞ=Pg � 100; (2)

where Pe and Pg are the estimated and reference population in each census

block, respectively. Values of RE can be stored in a field in the census-block

attribute table to support convenient mapping using the GIS. Additionally,
mean relative error (MRE) can be used to quantify model performance:

mean relative error : MRE ¼

Pn

k¼1

jREkj

n
: (3)

To reduce the influence of extreme values, a median absolute relative error

(MARE) is also used.

As an example of data pre-processing, figure 6 shows the input layers and the final

nDSM. From the parcel records, pre-2000 (including 2000) residential and commer-

cial parcels are selected to create a parcel map (figure 6(a)). Commercial parcels are

selected at this stage because apartment complexes are listed as commercial parcels.

This parcel map is then used as a mask to remove non-residential and non-commercial
areas from the LiDAR nDSM map. As a result, some commercial buildings may exist

in the LiDAR nDSM map (see red circles in figure 6(b)). Due to the relatively large

sizes and spectral properties of the roofs and neighbouring car parks, these buildings

can be classified as CIT on Landsat TM images. Figure 6(c) shows a classified Landsat

TM image in which grey pixels are residential areas, red pixels are CIT, yellow pixels

are soils and green pixels are vegetation. It can be seen that the two isolated buildings

in figure 6(b) are classified as CIT. Even though the Landsat TM images have a

much lower resolution compared with LiDAR nDSM, the spectral information
provided by Landsat TM images can help remove non-residential areas from the

nDSM. Figure 6(d) is the final nDSM after combining the parcel map, the original

nDSM and the Landsat TM image classification results. This final nDSM is the base

map for population estimation using regression models for building count, building

area and building volume.

4. Results and discussions

Figure 7 shows the regressions models derived from (1) 91 continuous sampling

census blocks (see shaded blocks in figure 4(a)) and (2) 91 random sampling blocks

(see shaded blocks in figure 4(b)). A summary of model results are listed in tables 1, 2,

3 and 4.

To better understand the error distribution of the regression models, scatter dia-

grams were generated to show the relationship between relative estimation error and

population density at the census-block level (figure 8). In figure 8, the relative errors

were obtained from OLS regression models built from random samples using (a)
building count as the independent variable, (b) building area as independent variable
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Figure 7. Regression models derived from sampling blocks: (a), (b) and (c) are from contin-
uous sampling blocks shown in figure 4(a), while (d), (e) and (f) are from random sampling
blocks shown in figure 4(b).

Table 1. Summary of continuous sampling model results.

Independent variable Regression model R2 MRE (%) MARE (%) TE (%)

nDSM building count y ¼ 2.948x þ 7.4341 0.8251 53.46 29.43 -25.42
nDSM building area y ¼ 0.0073x þ 3.3004 0.7622 52.84 41.75 -35.29
nDSM building volume y ¼ 0.0005x þ 6.0216 0.7192 55.77 47.12 -38.18

MRE: mean relative error for the overall dataset; MARE: median absolute relative error for the
overall dataset; TE: total population estimation error (%) based on the overall dataset in the
study area; R2: coefficient of determination.
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and (c) building volume as the independent variable. It should be noted that scatter

diagrams created from the multiple regression model and GWR models also show

error distribution patterns very similar to figure 8, although these diagrams are not

included in the paper.

A few observations of the above results are discussed below.

(1) The R2 values for OLS models and GWR models suggest that population count

is strongly correlated with residential building count, area and volume derived
from the final nDSM. Although other studies show that the traditional

housing-unit method (HUM) offers a number of advantages over other

population-estimation methods (Smith and Lewis 1980, 1983, Smith and

Cody 1994), there is no obvious pattern to show that building count outper-

formed building area and volume in this study. High-resolution image data and

LiDAR data are need for more detailed evaluation of the three independent

variables for small-area population estimation.

(2) Figure 8 indicates that population count is often overestimated when population
density at the census-block level is less than approximately 300 persons km-2,

whereas population count is always underestimated when population density is

greater than approximately 3500 persons km-2, regardless of the independent

variable. Similar observations have been reported by Lu et al. (2006) for

population-density estimation using Landsat TM data. It seems that the total

estimation error is controlled by both the sign and magnitude of the relative

estimation errors. In this study, underestimation has a larger magnitude because

Table 2. Summary of random-sampling model results.

Independent variable Regression model R2 MRE (%) MARE (%) TE (%)

nDSM building count y ¼ 2.6312x – 1.7538 0.9146 55.80 26.14 -23.03
nDSM building area y ¼ 0.0224x – 2.1579 0.9496 38.87 24.20 -26.57
nDSM building volume y ¼ 0.0021x – 2.4537 0.9324 46.41 23.92 -24.06

Table 3. Summary of multiple-regression model based on random sampling.

Independent variables Regression model R2
MRE
(%)

MARE
(%)

TE
(%)

nDSM building area (x1) and
building count (x2)

y ¼ 0.0299x1 –
10.9131x2 – 1.5613

0.9520 36.12 23.66 -27.48

Table 4. Summary of geographically weighted regression (GWR) results.

Independent variable Regression model R2 MRE (%) MARE (%) TE (%)

nDSM building count GWR 0.9701 44.55 21.19 -24.93
nDSM building area GWR 0.9789 38.09 15.96 -27.16
nDSM building volume GWR 0.9741 42.30 16.62 -25.36
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it mainly happens in census blocks with a high population density. As a result,

total population is underestimated, as shown in tables 1 to 4.

(3) Models derived from random samples seem to generate more accurate results

compared with those derived from continuous samples because random sam-

ples can better represent data distribution in the study area than clustered

samples. Values of the median absolute relative error (MARE) indicate that:
(a) the OLS models and GWR models built from randomly selected samples

provide more accurate estimates than the OLS model built from continuous

samples at the census-block level and (b) the GWR models provide more

accurate estimates than the OLS models because spatial heterogeneity can be

better modelled in GWR models than in OLS models. The better performance

of GWR models than OLS models is also reported by Lo (2008) for population

estimation in Atlanta.

(4) For census blocks with a low population density (for example, less than 100
persons km-2), relative error of population estimation in percentage can be

misleading. For example, for a census block with actual population of 2 and

Population density (persons km−2)

Population density (persons km−2)

Population density (persons km−2)

(a)

(c)

(b)

Figure 8. Scatter diagrams of relative population-estimation error versus population density
at the census-block level. The relative errors were obtained from OLS models built from
random samples using (a) building count as the independent variable, (b) building area as the
independent variable and (c) building volume as the independent variable.
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estimated population of 6, the relative error is 200%, but the actual error of 4

persons may be insignificant compared with the total population of the census

tract. The small-number problem needs be taken into account for population

estimation at census-block level.

(5) Contrary to (4), an extremely high population density in a small census block
(such as high-rise apartment complexes) would also affect the total estimation

error. Separation of high-rise apartment buildings from commercial/industrial

ones using remote sensing remains a challenge. Further study is required to test

the use of physical properties of LiDAR-derived buildings and other models of

population estimation such as kriging (Wu and Murray 2005).

(6) The LiDAR data in this study were collected during leaf-on season (4

September 2001), which makes it difficult to separate residential buildings

from tree canopies. This may not be a serious problem for relatively new
communities where most trees are small, but can be a factor affecting popula-

tion estimation in older communities with many mature trees. It is anticipated

that high-resolution LiDAR data can help separate tress from buildings based

on measures of slope, aspect and three-dimensional (3D) shape. A recent study

suggests that 3D shape signatures derived from LiDAR data can be used to

discriminate different tree crowns (Dong 2009). It is reasonable to expect that

3D shape signatures of buildings and trees can be different, which may help

separate trees from buildings.
(7) As shown in figure 6, integration of spatial information provided by LiDAR

and spectral information provided by Landsat TM images may be very useful

for information extraction in some areas. However, because of the big differ-

ence in spatial resolution of Landsat TM and LiDAR data, using Landsat TM

image classification as a mask may also cause information loss in the final

nDSM data. The integration of spatial information from LiDAR and size,

shape and texture information from high-resolution images (such as

IKONOS) could help separate trees from buildings and improve the accuracy
of population estimation.

(8) The LiDAR data used in this study were resampled to a point spacing of 3–5 m,

which affects accurate representation of buildings. It is possible that the rela-

tively low accuracies for small-area population estimation were partly caused

by the relative low spatial resolution of the LiDAR data. It would be interesting

to compare area-based, volume-based and count-based OLS models and GWR

models when high-resolution LiDAR data are available.

5. Conclusions

Based on LiDAR, Landsat TM and parcel data, a refined nDSM was created and

used for small-area population estimation. Using census 2000 data and census-block

samples, 10 OLS models and GWR models were built from independent variables of

building count, building area and building volume obtained from the nDSM. The

regression models were then applied to the census blocks in the study area, and

accuracy assessments were carried out. Models derived from random samples seem
to generate more accurate results compared with those derived from continuous

samples because random samples can better represent data distribution in the study

area than clustered samples. Median absolute relative errors suggest that the GWR

models outperformed the OLS regression models because spatial heterogeneity in
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population density is better handled in GWR models. The results show that the total

accuracy of population estimation in the study area is controlled by the sign and

magnitude of relative errors at the census-block level. Since underestimation usually

happens in census blocks with high population density, the total population count in

the study area is underestimated, with a minimum estimation error of about -23%.
Such an accuracy is not high enough for small-area population estimation. Possible

reasons behind the relatively low accuracies are (1) lack of high-resolution LiDAR

data and image data and (2) difficulty in separating trees and buildings using Landsat

TM images and LiDAR data with 3–5 m point spacing. It would be interesting to

compare the results with those derived from high-resolution LiDAR data and image

data (such as IKONOS), which would help evaluate the application of LiDAR and

remotely sensed image data for small-area population estimation. Alternative models

such as kriging should be evaluated to address issues caused by small numbers and
variations in population density. Problems related to tree and building separation,

shape indexes and signatures of trees and buildings and spatial/spectral integration of

high-resolution satellite images and LiDAR data need to be further investigated.
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