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Abstract

A multiscale approach to hyperspectral image data analysis using fractal signatures was proposed and implemented in the Interactive
Data Language (IDL). For 2-D hyperspectral curves, fractal signature measures the changes in curve length with changing scale. Using
NASA’s Earth Observing-1 (EO-1) Hyperion image from a study area near Denton, Texas, USA, the capabilities of fractal signatures in
discriminating different land cover types were presented in three different ways: (1) fractal signature curves, (2) distances between fractal
signatures, and (3) fractal signature images. The asymmetry in length measurement was found to be effective in handling hyperspectral
curves obtained from Hyperion radiance data. The contribution of fractal signature images was shown through comparison of image
classification results. The results from the Hyperion radiance data suggest that fractal signatures at certain scales can reveal important
differences in land cover types.
� 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Image analysis in scale-space

Multispectral data can be represented in three principal
ways: image space, spectral space, and feature space (Land-
grebe, 1997). In image space, pixels are arranged in geomet-
ric relationship to one another. In spectral space, variations
within pixels are expressed as a function of spectral wave-
length. In feature space, pixels are displayed as points in
an N-dimensional space. With more and more remotely
sensed data being acquired by airborne and spaceborne
platforms, a key issue in image analysis is how to extract
information from data more effectively and efficiently.
Many information extraction methods for hyperspectral
data have been developed (for example, Landgrebe, 1997;
Tsai and Philpot, 1998; Hsu and Tseng, 1999, 2000; Scho-
wengerdt, 2006). In addition to the three data representa-
tion methods, multiscale representation is also important
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because many natural objects appear in different ways
depending on the scale of observation. The scale-space con-
cept has attracted increased interest in signal processing
and numerical analysis. For example, as a type of multi-
scale representation, wavelet transform has been used for
hyperspectral image data analysis in various applications
(Hsu and Tseng, 2000; Mathur et al., 2002; Kaewpijit
et al., 2003; Pu and Gong, 2004). An important require-
ment in multiscale representation is that structures at
coarse scales should constitute simplifications of corre-
sponding structures at finer scales (Lindeberg, 1994a,b).
In other words, structures at coarse scales are not simply
a smoothed version of the structures at finer scales.
1.2. Fractal geometry for analysis of remotely sensed images

Many natural objects are so complex and irregular that
models of classical geometry are sometimes insufficient to
describe them. Mandelbrot (1977) described these objects
using the term fractal, after the Latin fractus which means
broken or irregular fragments. Fractals can be generally
rved.

mailto:pdong@unt.edu


1734 P. Dong / Advances in Space Research 41 (2008) 1733–1743
defined as geometric shapes that have two properties: self-
similarity and fractional dimensionality (Devaney, 1990).
Fractal geometry has received increased attention as a
novel model for natural phenomena since Mandelbrot’s
work (Mandelbrot, 1977, 1983). In the areas of remote
sensing applications, a number of studies have been carried
out to evaluate the usefulness of fractals for analysis of
land surface images. De Cola (1989) used fractal analysis
of perimeters and areas derived from a classified Landsat
TM image to study the complexity of land cover types,
and concluded that it is possible to associate land cover
patterns with fractal measurements. Lam (1990) analysed
the fractal dimensions of different Landsat TM images
and bands, which shows that different land types have dif-
ferent levels of fractal dimensions in different bands. Rees
(1992) measured fractal dimensions of ice-sheet surfaces
using Landsat data. Roach and Fung (1994) analysed the
fractal scaling characteristics of spectrally classified Land-
sat TM images in a logging area in southern British Colum-
bia, Canada, and concluded that fractal geometry is not
useful as a primary classification tool, but fractal geometry
can be a useful tool for investigating and quantifying the
complicated and intimate relationship between forests
and their underlying surface topography. Qiu et al.
(1999) computed the fractal dimensions for each of the
224 spectral bands from two AVIRIS scenes selected from
a rural area and an urban area in Los Angeles, California,
and concluded that fractal dimension could be used to dis-
tinguish landscape types and for screening noisy bands.

All the above examples of fractals for remote sensing
application put emphasis on estimation of fractal dimen-
sion over an entire image or large image patches and can
be viewed as ‘‘global fractal analysis’’ of the images. In
many applications, a remotely sensed image is supposed
to contain different spatial and spectral patterns and
therefore a ‘‘local fractal analysis’’ seems to be more
desirable. Dellepiane et al. (1991) used a modified version
of the ‘‘blanket method’’ proposed by Peleg et al. (1984)
for estimation of the fractal dimension for pixel windows
in a Seasat SAR image. The fractal dimension image is
then combined with intensity and texture features for
recognition of land cover types. De Jong and Burrough
(1995) used a triangular prism surface area method
(TPSAM) proposed by Clarke (1986) to assess local frac-
tal dimensions of remotely sensed images for classifica-
tion of Mediterranean vegetation types using Landsat
TM airborne Geophysical Environmental Research
(GER) Imaging Spectrometer images. Based on the anal-
ysis of fractal dimension values resulted from the vario-
gram method and the triangular prism surface area
method for calculation of fractal dimension, they con-
cluded that remotely sensed images of the land cover
units are not true fractals. The finding is consistent with
the conclusions of Burrough (1989) which indicate that
the landscape surfaces are not true fractals. They also
concluded that local dimension is insufficient for the
automatic classification of TM imagery into land cover
categories, though local dimension seems to reflect the
different vegetation types in the study area. These studies
suggest that fractal dimension has limitations in image
analysis. Such limitations are also discussed in Dong
(2000a,b) and Myint (2003). In fact, an image intensity
surface may only be fractal in a limited scale range,
but may not be fractal for the entire scale range (Pent-
land, 1984; Peleg et al., 1984). Beyond the proper scale
range, it is theoretically inappropriate to calculate fractal
dimension for an image that is not fractal, even though
the so-called fractal dimensions might be useful descrip-
tors for image analysis in some cases. Therefore, new
measures that work for both fractals and non-fractals
would be a better choice than fractal dimension for
image analysis.

1.3. Objectives of this study

It is generally believed that the shape of a reflectance
spectrum can usually be broken down into two compo-
nents: the general shape of the spectrum and the distinc-
tive absorption features in the spectrum. Many pure
materials, such as minerals, can be recognized by the
position, strength and shape of their absorption features,
whereas many other materials, such as soils and rocks,
may lack distinctive absorption features. This paper pre-
sents a multiscale method that characterises spectra
derived from hyperspectral images using fractal signa-
tures. Fractal signature was first introduced by Peleg
et al. (1984) to characterise image textures. It measures
the change in the area of an image intensity surface with
changing scale, and can be used as a multiscale measure
for both fractals and non-fractals (Peleg et al., 1984).
The method was applied to NASA’s Earth Observing-1
(EO-1) Hyperion data from a study area in North Texas,
USA to aid in land cover mapping. However, this study
does not deal with textures of image intensity surfaces.
Rather it focuses on individual spectrum derived from
each pixel location in a hyperspectral image. The effec-
tiveness of fractal signatures in discriminating different
land cover types is illustrated using (1) fractal signature
curves, (2) distances between fractal signatures, and (3)
fractal signature images and classifications.

2. Study area and data

The study area is located in the Ray Roberts Greenbelt
near Denton, Texas, USA (Fig. 1). The area is relatively
flat and has an average elevation of about 163 m. In this
study, land cover types are divided into five general catego-
ries: (1) dense canopy vegetation (bottomland forest and
upland forest), (2) sparse canopy vegetation (rangeland,
shrub land, and agricultural land), (3) bare soil, (4) urban,
and (5) water.

The hyperspectral image data were acquired by
NASA’s Earth Observing-1 (EO-1) Hyperion on August
30, 2004. The launch of the EO-1 platform in November



Fig. 1. Location of the study area.

Fig. 2. EO-1 Hyperion image of the study area in the Ray Roberts
Greenbelt near Denton, Texas, USA. The numbers show the approximate
pixel locations where spectral curves were extracted. Image size: 182 by
182 pixels (5.46 km by 5.46 km).
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2000 marks the first operational test of NASA’s ‘‘New
Millennium’’ spaceborne hyperspectral technology for
Earth observation (NASA, 2002). The theme of the
EO-1 mission is the evaluation of advanced earth obser-
vation instruments through a combination of direct mea-
surements of performance and a broad range of
application studies (Ungar et al., 2003). The Hyperion
imaging spectrometer onboard the EO-1 is the first high
spatial resolution imaging spectrometer to orbit the
Earth. More information on the EO-1 and Hyperion
can be found in Pearlman et al. (2003) and Ungar
et al. (2003). The processing level for the 242-band (from
400 to 2500 nm) Hyperion data was 1R (radiometrically
corrected). The full dataset has 256 pixels and 6702 lines
with a pixel size of 30 m. The original 242 bands were
reduced to 138 bands, by excluding the bands with (1)
all pixels being zeros, (2) low signal to noise ratio at
both spectral ends (<430 nm and >2400 nm), (3) overlap
of the two spectrometers (VNIR and SWIR), and (4)
strong atmospheric water absorption. Fig. 2 is a sub-
image of 182 by 182 pixels (5.46 km by 5.46 km) in the
study area. The numbers 1–10 on the image show the
approximate pixel locations where spectral curves were
extracted for selected land cover types. Numbers 1 and
2 are for dense canopy vegetation, 3 and 4 for sparse
canopy vegetation, 5 and 6 for soil, 7 and 8 for water
(Lake Lewisville), and 9 and 10 for urban areas. The
spectral curves for the selected land cover types are
shown in Fig. 3. It should be noted that the band num-
bers in Fig. 3 are for the reduced set of 138 bands, not
corresponding to the original 242 Hyperion bands. These
band numbers should be interpreted as indices rather
than actual wavelengths.
3. Methodology

Peleg et al. (1984) defined fractal signature as the change
in measured area with changing scale when studying tex-
ture analysis and classification of digital images. Their
study was based on 3-D image intensity surfaces (i.e., pixel
locations in the x–y plane and pixel values in the z direc-



Fig. 4. An original surface and its upper and lower surfaces at e = 1,2.

Fig. 3. Spectral curves of selected land cover types derived from locations in Fig. 2.
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tion), whereas this study is based on 2-D profiles (i.e.,
hyperspectral band numbers in the x direction and pixel
values in the y direction). Unlike texture analysis where a
pixel and its neighbors are taken into account and the out-
put is a texture feature image with degraded spatial resolu-
tion, analysis of hyperspectral profiles deals with the pixel
values in hyperspectral bands at individual pixel locations.
Therefore, the output image will have the same spatial res-
olution as the input hyperspectral image. A 2-D profile can
be considered a special case of a 3-D surface. A 3-D surface
has surface area while a 2-D profile has profile length. As a
general introduction of the methodology, the following
description is based on 3-D surfaces. Most of the notations
and formalism are adopted from Peleg et al. (1984).

Given an image gray level function g(i, j), the surface of
g(i, j) can be covered with a ‘‘blanket’’ of thickness 2e
(e = 1,2, . . . ,n), where e is used as the measurement scale.
The covering blanket is defined by its upper surface (ue)
and lower surface (be). Setting u0(i, j) = b0(i, j) = g(i, j), the
upper surfaces and lower surfaces can be constructed using
the following expressions:

ueði; jÞ ¼ max ue�1ði; jÞ þ 1; max
jðm;nÞ�ði;jÞ61j

ue�1ðm; nÞ
� �

ð1Þ

beði; jÞ ¼ min be�1ði; jÞ � 1; min
jðm;nÞ�ði;jÞ61j

be�1ðm; nÞ
� �

ð2Þ

where (m,n) is an immediate neighbor of (i, j). Eq. (1)
ensures that the new upper surface ue is higher by at least
1 from ue�1. Similarly, Eq. (2) ensures that the new lower
surface be is lower by at least 1 from be�1. Fig. 4 illustrates
an original surface and its upper and lower surfaces at
e = 1 and 2.

The volume of the blanket is calculated using

ve ¼
X

i;j

ðueði; jÞ � beði; jÞÞ ð3Þ

and the surface area of the blanket is defined as
AðeÞ ¼ ðve � ve�1Þ
2

ð4Þ

According to Mandelbrot (1983), the area of a fractal
surface can be expressed as

AðeÞ ¼ F e2�D ð5Þ

where F is a constant, and D is the ‘‘fractal dimension’’.
For measurement of both fractal and non-fractal surfaces,
fractal signature S(e) is computed for each e
(e = 2,3,4, . . .,n) by finding the slope of the best fitting
straight line through the three points

ðlogðe� 1Þ; logðAðe� 1ÞÞÞ; ðlogðeÞ; logðAðeÞÞÞ;
ðlogðeþ 1Þ; logðAðeþ 1ÞÞÞ

Suppose p and q are two spectra derived from two differ-
ent land cover types, the difference between the two fractal
signatures Sp and Sq is measured by the distance D(p,q)

Dðp; qÞ ¼
X

e

ðSpðeÞ � SqðeÞÞ2
h i

� log
eþ 1

2

e� 1
2

 !( )
ð6Þ



Fig. 5. Creation of fractal signature images.
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In his paper ‘‘How long is the coast of Great Britain:
statistical self-similarity and fractional dimension’’, Man-
delbrot (1967) noticed the asymmetry in length measure-
ment: reversing the role of land and water, different
coastline lengths might result. To make use of this asymme-
try, Peleg et al. (1984) divided the above surface area mea-
surements into two parts: measuring the area of the gray
level surface from ‘‘above’’ and measuring the area of the
surface from ‘‘below.’’ Therefore, the volume definition
of Eq. (3) can be changed to the following two definitions
of ‘‘upper volume’’ vþe and ‘‘lower volume’’ v�e :

vþe ¼
X

i;j

ðueði; jÞ � gði; jÞÞ ð7Þ

v�e ¼
X

i;j

ðgði; jÞ � beði; jÞÞ ð8Þ

Accordingly, ‘‘top area’’ A+(e) and ‘‘bottom area’’ A�(e)
are defined as

AþðeÞ ¼ vþe � vþe�1

¼
X

i;j

ðueði; jÞ � gði; jÞÞ �
X

i;j

ðue�1ði; jÞ � gði; jÞÞ

¼
X

i;j

ðueði; jÞ � ue�1ði; jÞÞ ð9Þ

A�ðeÞ ¼ v�e � v�e�1

¼
X

i;j

ðgði; jÞ � beði; jÞÞ �
X

i;j

ðgði; jÞ � be�1ði; jÞÞ

¼
X

i;j

ðbe�1ði; jÞ � beði; jÞÞ ð10Þ

Taking into account the asymmetry between fractal sig-
natures of upper surfaces and lower surfaces, the distance
between two fractal signatures Sp and Sq is defined as

Dðp; qÞ ¼
X

e

(
ðSþp ðeÞ � Sþq ðeÞÞ

2 þ ðS�p ðeÞ � S�q ðeÞÞ
2

h i

� log
eþ 1

2

e� 1
2

 !)
ð11Þ

where S+ and S� are the fractal signature of the upper sur-
faces and lower surfaces, respectively. For 2-D hyperspec-
tral curves, the above definitions for volume and surface
area become the definitions for area and profile length.
Therefore, ‘‘upper/lower surfaces’’ will be replaced by
‘‘upper/lower profiles’’ for 2-D hyperspectral curves in
the following discussion. Of particular interest is that
‘‘fractal signature images’’ can be extracted from upper
profiles or lower profiles at certain scales (i.e., certain e val-
ues). For example, the differences (distances) between the
hyperspectral fractal signatures of the two land cover class
samples p and q at each scale e (e = 2,3,4, . . . ,n) can be cal-
culated as

dþpqðeÞ ¼ ðSþp ðeÞ � Sþq ðeÞÞ
2 ð12Þ

d�pqðeÞ ¼ ðS�p ðeÞ � S�q ðeÞÞ
2 ð13Þ
With the change of scale e (e = 2,3,4, . . . ,n), each of
the above equations (Eqs. (12) and (13)) generates a dis-
tance list of n � 1 elements. If each list is sorted and the
top r (r < n � 1) distances selected, there will be a total
of 2r scales (e values) that can be used for creating frac-
tal signature images. Duplicate e values in the list of 2r

elements should be removed to obtain a distinct list of
e values.

From the above description, the process of creating frac-
tal signature images can be summarized as the following:

(1) Spectral curves at sampling locations (p,q, . . .) for dif-
ferent land cover types are retrieved from Hyperspec-
tral image data (Fig. 5a and b).

(2) Fractal signatures are calculated for the sampling
spectral curves at multiple scales (Fig. 5c).

(3) Based on the differences in the fractal signatures, a
unique list of scales is selected.

(4) For each pixel location in the input hyperspectral
image, a spectral curve is retrieved and the fractal sig-
natures of the curve calculated for each selected scale,
resulting in fractal signature images at multiple scales
(Fig. 5d).

Computer programs were developed using the Interac-
tive Data Language (IDL) in an ENVI� image processing
system for multiscale processing of hyperspectral image
data based on fractal signatures. To assess the contribution
of fractal signature images, two sets of images are classified
using maximum likelihood classification: (1) principal com-
ponent images derived from the 138-band EO-1 Hyperion
image; and (2) principal component images used in (1) plus
fractal signature images. The results are presented in the
next section.
4. Results and discussion

4.1. Fractal signature curves

Figs. 6–13 are the fractal signature curves with scale
e = 2,3,4, . . . , 39 for both upper and lower profiles of the
hyperspectral curves derived from the eight locations
shown in Fig. 2. It can be seen that the fractal signatures



Fig. 8. Fractal signature curves with scale e = 2,3,4, . . . ,39 (for sparse canopy vegetation sample 1).

Fig. 7. Fractal signature curves with scale e = 2,3,4, . . . , 39 (for dense canopy vegetation sample 2).

Fig. 6. Fractal signature curves with scale e = 2,3,4, . . . , 39 (for dense canopy vegetation sample 1).
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from upper profiles are very similar, especially for dense
canopy vegetation, sparse canopy vegetation, and soil
curves. However, the fractal signatures from lower profiles
are quite different. Dense canopy vegetation has obvious
peaks in the fractal signatures of the lower profiles at
e = 8, 19, and 28. Sparse canopy vegetation also has obvi-
ous peaks at the same locations as dense canopy vegeta-
tion, but the amplitude at e = 28 is much smaller than
that shown on the dense canopy vegetation curve. Soils
do not show any obvious peak after e = 14, while lower
profile fractal signature curves for water have two obvious
peaks between e = 27 and e = 30.
4.2. Distances between fractal signatures

Distances between the fractal signatures are calcu-
lated using Eq. (6) for the upper profiles (Table 1)
and lower profiles (Table 2), respectively. Table 1 and
Table 2 also confirm the observation from the fractal
signatures: the four different land cover types (dense
canopy vegetation, sparse canopy vegetation, soil, and
water) in the study area cannot be separated from the
upper profile fractal signatures of their spectral curves,
but they can be well separated from the lower profile
fractal signatures.



Fig. 9. Fractal signature curves with scale e = 2,3,4, . . . , 39 (for sparse canopy vegetation sample 2).

Fig. 10. Fractal signature curves with scale e = 2,3,4, . . . , 39 (for soil sample 1).

Fig. 11. Fractal signature curves with scale e = 2,3,4, . . . , 39 (for soil sample 2).
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4.3. Fractal signature images

Fig. 14 shows several lower profile fractal signature
images obtained from the Hyperion image in Fig. 2 using
(a) e = 8, (b) e = 19, (c) e = 20, and (d) e = 28. Preliminary
analyses indicate that the fractal signature images can
reflect the land cover types. For example, soils have rela-
tively brighter tones in Fig. 14a, which is in accord with
the results from Figs. 6–13 where soils have relatively
higher fractal signature values at e = 8 (for lower profiles).
According to Figs. 6–13, lower profile fractal signatures for
sparse canopy vegetation have brighter tones than other
three features at e = 19 and 20, as shown in Fig. 14b and
14c. Subtle changes in image tones are also visible when e
changes from 19 (Fig. 14b) to 20 (Fig. 14c). Fig. 14d shows
dense canopy vegetation with bright tones and sparse can-
opy vegetation with less bright tones, which also conforms
to the results in Figs. 6–9 at e = 28. It is also noticed that
some noise stripes in the Hyperion data are visible in
Fig. 14.

To evaluate the contribution of the fractal signature
images for discriminating different land cover types, two
sets of images are classified using the maximum likelihood
classification: (1) six principal components (PC1, PC2,
PC3, PC4, PC6, and PC7) derived from the 138-band
Hyperion image; and (2) the six principal component



Fig. 13. Fractal signature curves with scale e = 2,3,4, . . . , 39 (for water sample 2).

Table 1
Distances between upper profile fractal signatures from the eight sampling locations shown in Fig. 2

DV1 DV2 SV1 SV2 SO1 SO2 WT1 WT2

DV1 0 0.0157 0.0209 0.0092 0.0438 0.0712 0.2304 0.1886
DV2 0.0157 0 0.0296 0.0184 0.0302 0.0527 0.2076 0.1595
SV1 0.0209 0.0296 0 0.0130 0.0239 0.0539 0.2145 0.1753
SV2 0.0092 0.0184 0.0130 0 0.0177 0.0388 0.1801 0.1492
SO1 0.0438 0.0302 0.0239 0.0177 0 0.0162 0.1283 0.0963
SO2 0.0712 0.0527 0.0539 0.0388 0.0162 0 0.1469 0.1283
WT1 0.2304 0.2076 0.2145 0.1801 0.1283 0.1469 0 0.0781
WT2 0.1886 0.1595 0.1753 0.1492 0.0963 0.1283 0.0781 0

DV, dense vegetation; SV, sparse vegetation; SO, soil; WT, water.

Table 2
Distances between lower profile fractal signatures from the eight sampling locations shown in Fig. 2

DV1 DV2 SV1 SV2 SO1 SO2 WT1 WT2

DV1 0 0.0437 0.6509 0.9895 2.9462 3.0471 5.1283 4.3675
DV2 0.0437 0 0.4352 0.6901 2.4313 2.5192 4.6802 3.9118
SV1 0.6509 0.4352 0 0.1449 0.8852 0.9285 3.1315 2.4785
SV2 0.9895 0.6901 0.1449 0 0.7137 0.8126 3.2571 2.6049
SO1 2.9462 2.4313 0.8852 0.7137 0 0.0572 2.6524 2.0931
SO2 3.0471 2.5192 0.9285 0.8126 0.0572 0 2.5328 1.9656
WT1 5.1283 4.6802 3.1315 3.2571 2.6524 2.5328 0 0.0983
WT2 4.3675 3.9118 2.4785 2.6049 2.0931 1.9656 0.0983 0

DV, dense vegetation; SV, sparse vegetation; SO, soil; WT, water.

Fig. 12. Fractal signature curves with scale e = 2,3,4, . . . , 39 (for water sample 1).
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images in (1) plus the four fractal signature images in
Fig. 14. The classification results are shown in Fig. 15.
The overall classification accuracy increased from 64.07%
of the first image set to 83.85% of the second image set.



Fig. 14. Lower profile fractal signature images obtained from the Hyperion image in Fig. 2 using (a) e = 8, (b) e = 19, (c) e = 20, and (d) e = 28.

Fig. 15. Maximum likelihood classification results from: (a) six principal components (PC1, PC2, PC3, PC4, PC6, and PC7) derived from the 138-band
Hyperion image; and (b) the six principal component images plus the four fractal signature images in Fig. 14.
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4.4. Discussion

After examining the results from dense canopy vegeta-
tion, sparse canopy vegetation, and soil in 4.1 and 4.2,
one would ask: why do fractal signatures from upper pro-
files look very similar, whereas fractal signatures from
lower profiles behave differently? This can be explained
by the profile construction process as expressed in Eq. (1)



Fig. 18. Changes in the upper profiles and lower profiles of a sparse
canopy vegetation spectrum for e = 6–10.
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and Eq. (2), and illustrated in Fig. 4. The max operator in
Eq. (1) shrinks the valleys in the spectra, while the min
operator in Eq. (2) shrinks the peaks. Because of the differ-
ences in the shape and height of the peaks, the change of
shrinking rate in the min operation in Eq. (2) is greater
than that of the max operator in Eq. (1) after a certain scale
e. The changes in the upper profiles and lower profiles of a
dense canopy vegetation spectrum are shown in Fig. 16 (for
e = 6–10) and Fig. 17 (for e = 26–30). The changes in the
upper profiles and lower profiles of a sparse canopy vegeta-
tion spectrum are shown in Fig. 18 (for e = 6–10) and
Fig. 19 (for e = 26–30). It can be seen that the changes in
the lower profiles for dense canopy vegetation and sparse
canopy vegetation spectra are very similar for e = 6–10,
but quite different for e = 26–30 (see the two circles in Figs.
17 and 19), as also shown in their fractal signature curves
(Figs. 6–9).

As described in the methodology section, a unique list of
scales were determined from the spectra of features at sam-
ple pixel locations, and fractal signatures were calculated at
the scales that can be used to enhance the characteristics of
the features. Therefore, the fractal signatures presented in
this paper can be considered a multiscale feature-oriented
approach to hyperspectral image processing. Although a
Fig. 16. Changes in the upper profiles and lower profiles of a dense
canopy vegetation spectrum for e = 6–10.

Fig. 17. Changes in the upper profiles and lower profiles of a dense
canopy vegetation spectrum for e = 26–30.

Fig. 19. Changes in the upper profiles and lower profiles of a sparse
canopy vegetation spectrum for e = 26–30.
single fractal signature image may not be able to distin-
guish between all features in the image, fractal signatures
at multiple scales may provide additional information on
the image features.
5. Conclusions

Based on the fractal signature concept, a multiscale
approach to hyperspectral image analysis was proposed
and implemented in the Interactive Data Language (IDL).
Using NASA’s Earth Observing-1 (EO-1) Hyperion image
from a study area in the Ray Roberts Greenbelt near Den-
ton, Texas, USA, this paper demonstrated the capabilities
of fractal signatures in discriminating different land cover
types in three different ways: (1) fractal signature curves,
(2) distances between fractal signatures, and (3) fractal sig-
nature images. The asymmetry in length measurement
noticed by Mandelbrot (1967) has proven to be effective
in handling hyperspectral curves obtained from Hyperion
radiance data: measuring the lengths of spectral curves from
above and from below at multiple scales can reveal impor-
tant information on the features in the hyperspectral image.
The contribution of fractal signature images has been
shown through comparison of image classification results
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for five land cover types: dense canopy vegetation, sparse
canopy vegetation, soil, urban and water. The overall clas-
sification accuracy for the five land cover types was 64.07%
using the maximum likelihood classification of six principal
components (PC1, PC2, PC3, PC4, PC6, and PC7) derived
from the 138-band Hyperion image. When four additional
fractal signature images at certain scales were included for
classification, the overall classification accuracy increased
from 64.07% to 83.85%. Although detailed analysis and
assessment of fractal signatures in hyperspectral image
analysis is under way, the preliminary results from Hype-
rion radiance data suggest that fractal signatures at certain
scales can reveal important differences in land cover types.
Compared with fractal dimension which is limited to fractal
objects, fractal signature works for both fractal and non-
fractal objects. It would be interesting in future work to
assess the use of fractal signatures for detecting subtle
changes in reflectance spectra.
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