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Abstract. The paper presents results for spectral and textural analysis of the
rock units in Landsat Thematic Mapper (TM) images, dual-band (L and C) and
dual-polarization (HH and HV) Shuttle Imaging Radar (SIR)-C images, and C-
band HH polarization Standard Beam 4 and Extended High Incidence Beam 3
Radarsat images from a study area between California and Arizona, USA.
Fractal dimension, lacunarity and grey-level co-occurrence matrix (GLCM)
textural feature images were created from the SIR-C and Radarsat images.
Fractal dimensions were calculated using a differential box counting method and
lacunarity measures were obtained using a new grey-scale lacunarity estimation
method for 36 sample images extracted from the SIR-C and Radarsat images.
The fractal dimension and lacunarity curves and class signature separability
analysis show that, for rock unit discrimination using image textural features in
the study area, the SIR-C L-HH image is more suitable than other SIR-C images
and Radarsat images, and that co-polarization (HH) generally provides more
textural information than cross-polarization (HV) in the study area. The study
also shows that lacunarity measures can reveal the scaling properties of radar
image textures for rock units. The combination of spectral information from
Landsat TM images and textural information from radar images improves the
image classification accuracy of rock units in the study area.

1. Introduction

Since the 1930s, aerial photographs in the visible spectral region have been

utilized for interpreting geological features (Nowhuys 1937, Melton 1945,

Desjardins 1950, Miller 1961). While visible aerial photographs make it possible

for geological mapping in areas where field investigation is difficult due to poor

accessibility, they do have drawbacks: (1) they only provide information of objects

in the visible band; (2) their acquisition depends on the weather; and (3) they are
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normally recorded in analogue format, which precludes quantitative analysis. Many

traditional aerial photographic systems have been replaced by airborne and space-

borne electro-optical (visible, reflected infrared and thermal infrared) and electronic

(radar) sensor systems since the late 1960s and early 1970s. Visible and reflected
infrared, and thermal infrared images provide much more information than visible

aerial photographs on the spectral properties of rocks and minerals, and greatly

facilitate the application of remote sensing to geological mapping and mineral

exploration. However, images from electro-optical systems are still hindered by

cloud cover and Sun illumination conditions. The limitation can be removed by

radar imaging systems that operate independently of lighting conditions and largely

independently of weather.

The electro-optical and radar images in digital format allow for quantitative
analysis. For digital image processing, spectral analysis of multispectral images

concentrates on individual pixel locations, while textural features contain

information on the spatial arrangement of tonal values within an image. Although

spectral analysis can be very effective in discriminating different features in the

image, it has limitations in some cases. For example, spectral analysis methods may

not be able to discriminate sandstones from shales due to the similar spectral

properties of the two rock types, but texture analysis may be able to discriminate

the two rock types because sandstones normally have a coarser textured drainage
pattern than shales (Sabins 1987). Many studies in remote sensing of renewable

natural resource have shown that combination of spectral and textural features can

improve the classification accuracy (table 1). For rock unit discrimination, there are

a lot of studies using remotely sensed spectral data (e.g. Kahle and Goetz 1983,

Greenbaum 1987, Sabins 1987, Vandermeer 1996), but only a few number of

studies have been carried out to compare spectral with textural analysis of images

(table 1). In radar image analysis, texture is an important image element which may

be equally important as spectral dimension (Simonett and Davis 1983), or even
more useful than spectral dimension (Ulaby et al. 1986). Spectral analysis methods

such as per-pixel classifiers that were successful with Landsat images yield poor

results when applied to radar images, due in part to the presence of coherent fading

(or speckle) in the radar image (Ulaby et al. 1986). Unlike visible and reflected-

infrared waves, which interact matters on the molecular scale, microwaves from

radar systems interact with the Earth’s surface on the scale of radar wavelength

(1–100z cm). Accordingly, direct mapping of rock units based on composition is

not possible with radar images (Elachi 1982). However, the surface morphology of
rock units is often related to the composition and weathering characteristics of the

rocks. It is therefore possible to discriminate different rock units using their image

textural patterns. This is particularly true for radar images, because of the

sensitivity of radar backscatter to local topographic slopes.

In the past decades, many textural analysis methods have been published for

various application purposes. For geological applications, statistical textural

analysis methods, particularly the grey-level co-occurrence matrix (GLCM) based

measures proposed by Haralick et al. (1973), are the most popular ones (Weszka
et al. 1976, Shanmugam et al. 1981, Blom and Daily 1982, Gaddis et al. 1989, 1990,

Wang and He 1990). These geological case studies used visual interpretation of

texture images (for example, Gaddis et al. 1989, 1990), or scatter diagrams of

textural features (for example, Shanmugam et al. 1981, Wang and He 1990), for

detection of different rock unit textures. In recent years, there are a few studies that

have incorporated texture features into the classification of rock units. Mather et al.
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Table 1. Examples of literature results on comparison between spectral and spectralztextural analysis, in terms of percentage of correct classification for the
considered features.

Detected features Sensor
Time of
the year Location

Textural
parameter(1)

% correct classification

AuthorsSpectral SpectralzTextural

Landuse and landcover Landsat MSS July Oakland (USA) 8 74.0–77.7 83.5 Haralick and Shanmugam
(1974)

SPOT August Toronto (Canada) 1, 2, 3, 4, 5 0.574(2) 0.665(2) Gong et al. (1992)
Landsat TM July Cukurova Deltas (Turkey) 9, 10 74.0 89.0 Berberoglu et al. (2000)
ERS-1 SAR,

JERS-1 SAR
Finnish Lapland (Finland) 1, 2, 3, 4 50.0 65.0 Kurvonen and Hallikainen

(1999)
Forest and urban areas MEIS-II August Montréal (Canada) 6 82.0 94.0 Anys et al. (1994)
Various forest and non

forest areas
SPOT-HRV PLA October Bonaventure (Canada) 2, 3, 4, 5 9.0–63.0(3) 40.0–100.0(3) Marceau et al. (1990)

Forest cover types Landsat MSS July Gros Morne National
Park (Canada)

2 59.1 66.2 Franklin and Peddle
(1989)

SPOT-HRV MLA August Gros Morne National
Park (Canada)

2, 3 51.1 86.7 Franklin and Peddle
(1990)

SPOT-HRV MLA August Gros Morne National
Park (Canada)

4 73.2 87.8 Peddle and Franklin
(1991)

Landsat TM August Chatham (Canada) 1 34.2 39.5 Prihatno (1995)
Clearcut Landsat TM August Chatham (Canada) 1 69.0 71.0 Prihatno (1995)

Landsat TM August Cranbrook (Canada) Std(4) 93.0(5) 96.1(5) Arai (1993)
95.6(6) 100.0(6)

Rock units Landsat TM and
SIR-C C-HH

n/a Red Sea Hills (Sudan) 1, 2, 11, 12, 13 57.0 70.0 Mather et al. (1998)

Landsat TM n/a Almeria (Spain) 10 80.0 83.0–89.0 Chica-Olmo and
Abarca-Hernaândez
(2000)

(1) Textural parameter: 1~Homogeneity; 2~Entropy; 3~Inverse difference moment; 4~Angular second moment; 5~Contrast; 6~Mean; 7~Coefficient
of variation; 8~Spatial Grey-Tone Dependence Matrix; 9~Variance; 10~Variogram; 11~Fourier transform; 12~MAR model; 13~Multi-fractal.

(2) Kappa coefficients;
(3) Depending on the classified features (fallow land, agricultural fields, residential areas, bare soil, conifers, mixed forest, deciduous, peat bog, quarry);
(4) Std~standard deviation in the band TM4 (more a spatial parameter than a true textural parameter);
(5) New clearcut (confusion with alpine meadows);
(6) Old clearcut.
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(1998) employed the Fourier power spectrum, GLCM, multi-fractal measures, and the

multiplicative autoregressive random field (MAR) model for texture analysis of Shuttle

Imaging Radar (SIR)-C C-band HH polarization image for the discrimination of

surface rock types in an arid region, the Red Sea Hills of Sudan. Chica-Olmo and
Abarca-Hernaândez (2000) combined variogram measures and Landsat Thematic

Mapper (TM) image and obtained improved classification accuracy for three different

Quaternary deposit units in a study in Spain. In both studies, inclusion of textural

information into the image analysis improved classification accuracy (table 1).

The major disadvantages of the GLCM-based texture analysis are the lack of

any compelling theory underlying the texture measures, and the large amount of

potential measures. Since the work of Mandelbrot (1977, 1982), fractal geometry

has received increased attention as a novel model for natural phenomena. There is
evidence that most natural surfaces are spatially isotropic fractals and that intensity

images of these surfaces are also fractals (Pentland 1984), which laid the foundation

for the use of fractal models in image texture analysis. The geometry of structures

grown in many physical processes can be characterized by fractal dimension that

can be viewed as a measure of their irregularity (Mandelbrot 1982). However, it

becomes apparent that many natural fractal objects are often not very structurally

uniform and have variable ranges of self-similarity. For example, very differently

looking objects can have the same or very similar fractal dimension (Mandelbrot
1982, Voss 1986, Smith et al. 1996, Dong 2000a), and fractal dimension alone

would be useless for discriminating these objects.

Mandelbrot (1982) introduced the term lacunarity to describe the characteristic

of fractals of the same dimension with different texture appearances, and expected

that the ‘elusive notion’ of texture could be quantified by lacunarity. Following the

work by Plotnick et al. (1993) on the measurement of simulated binary habitat

types in landscape ecology using lacunarity, some researchers have employed

lacunarity for texture analysis of forests and ecosystems with remotely sensed
images (Kux and Henebry 1994a, b, Henebry and Kux 1995, 1996, Ranson and Sun

1997). It is noticed that all these studies were based on binary images, and grey-

scale images had to be sliced into binary images prior to lacunarity analysis. Since

the concept of lacunarity is based on fractals and has been extended to non-fractals

(Mandelbrot 1982, Allain and Cloitre 1991, Plotnick et al. 1993, 1996), it is

reasonable to believe that lacunarity should not be limited to binary objects.

Moreover, extension of lacunarity estimation to grey-scale images could reveal

more valuable textural information than lacunarity measure of binary images,
mainly because detailed textural information is lost in the process of converting a

grey-scale image (for example 8-bit) into a binary image (1-bit). Therefore, there is a

need to use new lacunarity estimation methods for grey-scale images.

Voss (1986) proposed a probability method to estimate the lacunarity of grey-

scale image intensity surfaces based on the mass of boxes. However, the Voss

method used cubic boxes that may not cover image intensity surfaces with sharp

variations in pixel values. In an earlier publication (Dong 2000b), a new lacunarity

measurement method for grey-scale images was introduced and tested on Brodatz
texture patterns (Brodatz 1966). The results of Dong (2000b) showed better

performance of the new lacunarity measure in comparison with some statistical-

based and fractal-based textural measures, including the fractal dimension, the

binary lacunarity, and the grey-scale lacunarity proposed by Voss (1986). In this

paper, GLCM, fractal dimension and lacunarity will be employed for analysis of

rock unit textures from the dual-band (L and C) and dual-polarization (HH and
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HV) SIR-C images and Radarsat standard beam 4 (STDD4) and extended high

incidence beam 3 (EXTH3) images in a study area between California and Arizona,

USA. Textural information from radar images will be combined with spectral

information from Landsat TM images for image classification of rock units. The

purposes of this study are twofold: (1) to compare the abilities of the above-

mentioned radar images in discriminating different rock unit textures, using

conventional statistics, fractal dimension, lacunarity, and class separability analysis

results; and (2) to test the performance of the new lacunarity measure in the

classification of rock units using spectral and textural information. Fractal

dimension estimation was based on a differential box counting method proposed

by Sarkar and Chaudhuri (1992), and lacunarity estimations were obtained using a

method proposed by Voss (1986) and a new method developed by Dong (2000b) to

compare the effectiveness of the two lacunarity estimation methods.

2. Study area and data

The study area is located at the south-easternmost corner of California,

covering part of Arizona, USA (figure 1). It lies to the east of the Imperial Valley,

and includes part of the Chocolate Mountains, which extend north-westward from

the Colorado River. The climate of the region is extremely arid. Rainfall generally

ranges between 5–7 cm per year. There is no vegetation cover in the study area

except for very small areas in the Colorado River valley. Therefore, influence of soil

moisture and vegetation on the radar signal is minimal in the study area. A

geological map of scale 1 : 125 000 compiled by Morton (1966) was used as reference

for classifying rock units. Rock units of the study area are divided mainly into two

groups: Tertiary rocks and undivided Pre-Tertiary rocks (Morton 1977). Major

rock types in the study area include quartz biotite gneiss, sericite schist, undivided

metasedimentary rocks, sedimentary breccia, volcanic rocks, basalt flows, clastic

rocks, and unconsolidated Quaternary sediments. In order to select representative

training areas from the rock units for image classification, and to evaluate the

classification accuracy quantitatively, the rock units were digitized from the

1 : 125 000 scale geological map (Morton 1966), and converted into ESRI GRID

Figure 1. Geographical location of the study area.
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format. Each rock unit was assigned a unique value, and an AVENUE script

developed by the first author for ArcView GIS (ESRI) was employed to

automatically retrieve grid values of random sampling points, which greatly

facilitates the classification accuracy assessment.

Radar image data from the SIR-C and Radarsat were used in the study. The

SIR-C L-band HH and HV polarization, and C-band HH and HV polarization

images were acquired in the space shuttle Endeavor mission STS-59 on 12 April

1994. The scene is one of the 300z SIR-C test sites around the Earth. A study area

of 25 km615 km (200061200 pixels) was extracted from the upper left corner of

the scene. Radarsat provides C-band HH polarization images with resolutions from

9 to 100 m at different modes. In this study, two images from STDD4 and EXTH3

were used. Some of the SIR-C and Radarsat image parameters are listed in table 2.

The SIR-C and Radarsat images were all converted to 8-bit images to reduce the

size of the GLCM and facilitate computer processing. Since the conversion is

through linear scaling, it does not modify image texture substantially. To

investigate whether the textural information obtained by lacunarity analysis can

be combined with spectral information to get better classification results, Landsat

TM data acquired on 18 November 1996 were also used in this study. Landsat TM,

SIR-C and Radarsat images need to be co-registered in order to perform

comparison and classification. The Radarsat images were co-registered to the SIR-

C images through the cubic interpolation resampling to retain textural features, and

the Landsat TM images were co-registered to the SIR-C images through the nearest

neighbour resampling so that the spectral data of Landsat TM images are not

modified substantially.

Speckle is an issue related to radar images. Speckle effects are normally

removed/reduced if the radar image is used for pixel-by-pixel classification (for

example, Blom and Daily 1982, Durand et al. 1987, Evans 1988), because speckle

may create a statistical distribution with a large standard deviation even in

homogeneous areas, thereby causing errors for pixel-by-pixel classifiers. However,

this is not the case for textural analysis of the radar images. Any attempt to simply

remove speckle from the image is done at the expense of all information about the

spatial variability of the target scattering properties (Rignot and Kwok 1993). The

study by Dellepiane et al. (1991) shows that speckle does not significantly affect

textural measurement using fractal dimension, though they did not explain the

reason for this. In our paper, the major purpose is to examine the performance of

Table 2. Technical parameters for SIR-C and Radarsat images.

SIR-C
Radarsat
(STDD4*)

Radarsat
(EXTH3*)

Imaging date 12 April 1994 5 March 1997 13 February 1997
Orbit direction Descending Descending Descending
Looking direction Right Right Right
Incidence angle at image centre 23.072‡ 33.6–39.6‡ 52–58‡
Resolution at image centre 25 m 30 m 18–27 m
Pixel size 12.5 m612.5 m 12.5 m612.5 m 12.5 m612.5 m
Bits per pixel 40-bit 16-bit 16-bit
Number of looks 5 4 4
Wavelengths L (23.5 cm), C (5.8 cm) C (5.8 cm) C (5.8 cm)
Polarizations HH, HV HH HH

*STDD4—standard beam 4; EXTH3—extended high incidence beam 3.
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lacunarity measures in comparison with other textural measures. Therefore, speckle

is not removed.

3. Methodology

Analyses of radar image textures in this study are carried out using two image

groups.

3.1. Sample images

This group consists of sub-image windows of 79679 pixels (987.5 m6987.5 m

on the ground) derived from co-registered SIR-C (L-HH, L-HV, C-HH and C-HV)

and Radarsat (STDD4 and EXTH3) images for six rock types—basalt, breccia,

clastic, granitic, schist and volcanic—resulting in a total of 36 sub-image windows.

Sub-image windows for metasedimentary rocks and Quaternary deposits were not

included in this group because: (a) it is difficult to extract a 79679 pixels

(987.5 m6987.5 m) sub-image for metasedimentary rocks due to the limited sizes of

metasedimentary exposure in the study area; and (b) Quaternary deposits generally

distribute in flat areas of the study area, and do not have rich texture expressions

on the radar images used in this study. Mean digital number (DN) values and

standard deviation around the mean DN values were generated for the sub-images

from the SIR-C and Radarsat images. GLCM-based texture measures (homo-

geneity, contrast, dissimilarity and entropy) are calculated for each sub-image. With

the help of a Lacunarity Analysis extension developed by the first author based on

ESRI’s ArcView GIS software (Dong 2000a), fractal dimension and lacunarity

measurements were carried out for the 36 sub-images. Fractal dimension estimation

was based on a differential box counting method proposed by Sarkar and

Chaudhuri (1992), and lacunarity estimations were obtained using a method

proposed by Voss (1986) and a new method developed by Dong (2000b) to compare

the effectiveness of the two lacunarity estimation methods.

3.2. Full scenes

The group is made up of Landsat TM, SIR-C (L-HH, L-HV, C-HH, C-HV)

and Radarsat (STDD4 and EXTH3) images of the study area (120062000 pixels,

15 km625 km on the ground), and the textural feature images derived from SIR-C

and Radarsat images. The textural feature images were created using the non-

directional and directional lacunarity measures obtained using the method

proposed by Dong (2000b), the lacunarity estimation method proposed by Voss

(1986), the fractal dimension measurements based on differential box counting

(Sarkar and Chaudhuri 1992) and some GLCM measures (homogeneity,

dissimilarity, contrast and entropy) proposed by Haralick et al. (1973). Figure 2

shows the flow chart for investigating the performance of the various spectral and

textural image combinations for rock unit discrimination in the study area. These

steps in the flow chart are described below.

(a) Texture analysis is carried out for SIR-C and Radarsat images using the

above-mentioned texture measures in a 17617 moving window.

(b) Texture features images are scaled to 8-bit.

(c) Signatures of the eight rock units are generated based on training areas for

raw Landsat TM, SIR-C and Radarsat images, texture feature images, and

various combinations of spectral and textual images.

Spectral and textural analysis of rock units 3751



(d) Class separability analysis is achieved through calculating the Jeffries-

Matusita (J-M) distance, and selection of the optimal image combination

based on the maximum value of the minimum J-M distances. The J-M

distance is a measure of the average distance between the two class density

functions. It can be defined as (Richards 1994):

d~2 1{e{b
� �

ð1Þ
where d is the J-M distance, and b is the Bhattacharyya distance between

two classes. The calculation of b can be found in Richards (1994). For eight

rock unit classes, there are 28 possible class pair combinations, and

therefore 28 J-M distance values. The minimum of the 28 values in the range

0–2 is used for comparison between different image combinations. Larger

values of the minimum J-M distance mean that class signatures are more

separable than those with smaller minimum J-M distance values. The image

combination that has the largest minimum J-M distance value is selected as

the optimal image combination for classification.

(e) Maximum likelihood classification of the 6-band (exclusive of the thermal

band) Landsat TM imagery and the optimal image combination into eight

rock unit categories, namely basalt, breccia, clastic, granitic, metasedimentary,

Quaternary, schist and volcanic. Metasedimentary rocks and Quaternary

Figure 2. Flow chart of textural feature extraction and spectral/textural image classification.
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deposits were not included in the first image group (sample images), but

were included in the second image group because Landsat TM images

were used for classification.

(f) Classified images are obtained for the Landsat TM images and the optimal

image combination.

(g) Generation of random sampling point files: Identification numbers and (x, y)

coordinates of the random sampling points are stored as text files which will

Figure 3. Charts showing the mean and the standard deviation around the mean values of
digital numbers (DN) in the SIR-C and Radarsat sample images. x~mean,
2~standard deviation. 1, breccia; 2, basalt; 3, schist; 4, volcanic; 5, clastic;
6, granitic.
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be processed by an ArcView GIS (ESRI) AVENUE script developed in this

study to retrieve the rock type of each sampling point.

(h) Rock unit boundaries are digitized from the 1 : 125 000 geological map.

Polygon topology is created and attributes are added to each polygon. The
digitized rock unit map is then converted into ESRI GRID format.

(i) The ArcView GIS (ESRI) AVENUE script is employed to process the

random sampling point files with reference to the GRID format rock unit

map. The rock type value for each sampling point is retrieved automatically.

Confusion matrices are generated based on class values on the classified

images and referenced values on the reference image.

(j) Assessment of classification accuracies: Taking into account the error of

omission and error of commission, the classification accuracy for class X can
be calculated as the number of correct pixels for class X divided by the sum

of the number of correct pixels for class X, the number of omission pixels for

class X, and the number of the commission pixels for class X. The

classification was conducted on an ERDAS IMAGINE software (ERDAS

Inc.), and the accuracy assessment was based on 1024 random sampling

points.

4. Results and discussions
4.1. Sample images

By comparing the mean DN values and standard deviation bars for the rock

sample images extracted from the SIR-C and Radarsat images (figure 3), it appears

that the L-HV image shows the most tonal differences of the six rock units. For

example, it would be difficult to differentiate breccia and clastic rocks based on

their mean DN values in the SIR-C L-HH image, but the two rock units can be well

separated from each other in the SIR-C L-HV image.

Figure 4 shows the GLCM-based texture measures (homogeneity, contrast,
dissimilarity and entropy) for the sample images. As can be seen, the curves in

figure 4 are all relatively flat, which means that the GLCM texture measures may

not effectively discriminate different textures of the sample images.

For the differential box counting method (Sarkar and Chaudhuri 1992), fractal

dimension values may change with different maximum box sizes used for least-

square fitting. Lacunarity is a scale-dependent measure (Gefen et al. 1983), and will

change with gliding-box size. The fractal dimension as a function of the maximum

box size, and the Voss lacunarity and new lacunarity as a function of gliding-box

size are shown in figure 5, figure 6 and figure 7, respectively.
From figure 5 it can be seen that basalt generally has higher fractal dimension

values than other rock units, particularly on the SIR-C L-HV image (figure 5(b)).

However, it is difficult to generalize a changing pattern of the fractal dimensions of

different rock units, except that the shape of the fractal dimension curves changes

with the maximum box size in a similar manner. Comparison between figure 6 and

figure 7 indicates that Voss lacunarity generally cannot reveal differences in rock

unit textures, particularly at larger gliding-box sizes (rw3). This is in accord with

the results in Dong (2000b), and can be attributed to the better approximation of
the new lacunarity method (Dong 2000b) to the image intensity surface. As can be

seen, the basalt and clastic rocks, which were not differentiable in figure 3, can be

well differentiated from each other due to the clear differences in their new

lacunarity values on both the SIR-C L-HH image (figure 7(a)) and the SIR-C C-HH

image (figure 7(c)), while such clear differences do not exist in the fractal dimension
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curves (figure 4(a) and (c)) and Voss lacunarity curves (figure 5(a) and (c)) of the

same images. Table 3 lists the comparison of five different rock unit pairs based on

their fractal dimension and lacunarity curves shown in figure 5 and figure 7. In

general, the new grey-scale lacunarity measure is better than fractal dimension and

Voss lacunarity in discriminating different image textures of rock types in this

study. As far as image type is concerned, the SIR-C L-HH image is better than

other SIR-C images and Radarsat images for discrimination of rock unit textures,

Figure 4. Grey-level co-occurrence matrix (GLCM) texture measures obtained from the
sample images. Spatial relationship~(0,1) (i.e. GLCM is constructed based on two
adjacent pixels in vertical direction). Texture feature values are scaled into 0–255 for
comparison. 1, breccia; 2, basalt; 3, schist; 4, volcanic; 5, clastic; 6, granitic.
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and co-polarization (HH) generally provides more textural information than cross-

polarization (HV) in the study area.

Figure 3 shows that the L-HV image may be more useful for discriminating

different rock units than the L-HH image as far as image tone is concerned. In fact,

many theories believe that cross-polarized return is dominated by subsurface

volume scattering (Blanchard and Rouse 1980, Fung and Eom 1981), and that the

relative cross-polarized return is much lower than like-polarized (Fung and Ulaby

1983). Schaber et al. (1997) believe that the improved discrimination of rock unit

tones in cross-polarized images is mainly a result of increased backscattering

Figure 5. Fractal dimension as a function of maximum box size for selected rock unit
sample images. The fractal dimension values are obtained using the differential box
counting method proposed by Sarkar and Chaudhuri (1992).
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contrast of rock units. In the study area, for example, the basalt unit can be easily

identified on the L-HV image by its bright tones. Since the study area has no

vegetation cover, the relatively high cross-polarized (HV) return from the basalt

flow unit cannot be related to vegetation canopies, which are strong volume

scatterers due to multiple reflection of branches and twigs (National Aeronautics

and Space Administration (NASA) 1989). The study area is in an extremely arid

environment, and the fine-grained vesicular basalt flows form prominent black

mesas with large sub-rounded boulders (Morton 1977). Therefore, the relatively

high HV return from the basalt unit can be attributed to multiple scattering from

Figure 6. Voss lacunarity as a function of gliding-box size for selected rock unit sample
images. The lacunarity values are calculated using the estimation method proposed
by Voss (1986), with gliding-box size r~2, 3, 4, 5, 6, 7, 8 and 9.
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the extremely rough surface of the unit. However, cross-polarization may not be

better than co-polarization when textural information of the image is under study,

as shown in the results from fractal dimension and lacunarity measurements.

The new lacunarity measurements (figure 7) seem to have geological significance

which is not obvious in the Voss lacunarity results (figure 6). For the new lacunarity

curves of the SIR-C images (figure 6(a)–(d )), breccia, schist and granitic rocks

generally have higher lacunarity, while basalt and clastic rocks have lower

lacunarity, and volcanic rocks have lacunarity values between ‘high’ and ‘low’. Such

a pattern seems to be related to the weathering resistance of the rocks. In fact,

Figure 7. Non-directional lacunarity as a function of gliding-box size for selected rock unit
sample images. The lacunarity values are calculated using the new estimation method
proposed by Dong (2000b), with gliding-box size r~2, 3, 4, 5, 6, 7, 8 and 9.

3758 P. Dong and B. Leblon



many mountain ridges are composed of highly resistant rocks. The ridge slopes can

create strong backscatter under certain radar illumination conditions. For the

Radarsat STDD4 and EXTH3 images, both fractal dimension and lacunarity

curves fail to show the differences of rock unit image textures, except that the

lacunarity curves for Radarsat STDD4 (figure 7(e)) show that breccia has higher

lacunarity than other rock units. Visual examination of the Radarsat STDD4 and

EXTH3 sample images for breccia indicates that the ridges have brighter tones on

the STDD4 image than on the EXTH3 image, which can be explained by the lower

incidence angle of STDD4 than EXTH3 (see table 2). With a higher incidence angle,

the EXTH3 image reduces the layover effects that appear on the STDD4 image as

brighter belts. The results from the lacunarity curves of the SIR-C and sample

images suggest that images with a ‘coarser’ texture (sharp contrast between bright

and dark) generally have higher lacunarity than images with a ‘smoother’ texture

(less contrast between bright and dark). It should be noted that high lacunarity

values at a certain scale do not necessarily mean that different texture patterns can

be better discriminated at that scale than at other scales, because the discrimination

of textures depends on the differences in their lacunarity measurements instead of

absolute lacunarity values. This has been shown in Dong (2000a), where Brodatz

textures can be better discriminated at scale r~5 than at r~2, 3, 4, 6 or 7. Also,

it would be difficult to conclude in general which scale provides the best

discrimination ability, as the lacunarity measure is scene-dependent. More

importantly, since lacunarity is scale-dependent, the use of lacunarity measure at

a single scale would be limited compared with the lacunarity measures at different

scales.

4.2. Full scenes

With six Landsat TM bands, four SIR-C images, two Radarsat images, and

various textural feature images from the radar images, the image combinations for

classification can be numerous. To select the optimal image combination for rock

unit discrimination using spectral and textural information, the J-M distances are

calculated for: (1) individual and combined Landsat TM bands; (2) individual and

combined SIR-C images; (3) combined Landsat TM and SIR-C textural feature

images; and (4) combined Landsat TM and Radarsat textural feature images. Since

the results from sample images show that the SIR-C L-HH image is better than

Table 3. Comparison of five rock unit pairs based on their fractal dimension and new
lacunarity curves.*.

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5

L F L F L F L F L F

L-HH v x v x v o v o x x
L-HV o o o o o o o o o x
C-HH o x x o o o o o o x
C-HV x x x x x x o x o x
STDD4 x x x x x x o x x x
EXTH3 x x x x x x x x x x

*Pair 1, breccia and clastic; pair 2, basalt and schist; pair 3, basalt and volcanic; pair 4,
breccia and basalt; pair 5, volcanic and granitic. F, fractal dimension; L, lacunarity; v, well
separated; o, moderately separated; x, not separated.
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other images for textural analysis, full scene textural feature images are obtained

mainly from the SIR-C L-HH image. To reduce the number of possible image

combinations, non-directional lacunarity and lacunarity in 135‡ direction are taken

into account, and not all directions are calculated. Figure 8 lists the image bands or

image combinations that have a minimum J-M distance greater than 0.01. The J-M

distances resulted from individual SIR-C images and their lacunarity images are

generally very small (v0.01, not shown in figure 8, except for the L-HH lacunarity

image). From the image combinations 4, 5, 7, 8 and 9 in figure 8, it can be seen that

Landsat TM data contained more separable rock unit information than did the

combination of SIR-C images and the lacunarity images of the SIR-C L-HH image.

The J-M distance values show that the new lacunarity measures outperformed the

Voss lacunarity, the fractal dimension, and the GLCM texture measures, which has

Figure 8. Separability of classes (minimum J-M distance) from different images and image
combinations. Results from lacunarity images of SIR-C L-HV, C-HH, C-HV and
Radarsat images are not shown due to the small J-M distance values (v0.01).
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also been shown in a previous paper using Brodatz textures (Dong 2000b). The

image combinations 5–11 in figure 8 show that the SIR-C L-HH image generally

contains more textural information of the rock units than L-HV, C-HH and C-HV

images (J-M distances from lacunarity images of L-HV, C-HH and C-HV are less

than 0.01 and are not shown in figure 8). Image combinations 10 and 11 seem to

indicate that L-band is better than C-band for differentiating rock unit textures. As

can be seen in the J-M distance values (figure 8), the combination of TM all bands

and SIR-C L-HH new lacunarity images at r~3, 5, 7, h~135‡ is the optimal

combination for rock unit classification, and SIR-C images generally provide more

textural information than Radarsat images in the study area. The optimal

combination is used for classification.

From table 4, it can be seen that the classification accuracy is relatively low for

both the Landsat TM six bands (bands 1, 2, 3, 4, 5 and 7), and the optimal image

combination, but the classification accuracy increased 8.31% on average, from an

average of 25.35% for the TM bands to an average of 33.65% for the optimal image

combination.

In a previous publication (Dong 2000b), it has been shown with Brodatz

textures that lacunarity measures can reveal the scaling properties of textures: a

texture X can be discriminated from texture Y at certain scales (or gliding-box

sizes), while X and Y may not be differentiated at some other scales. As an example,

figure 9 shows the SIR-C L-HH image of the whole study area (25 km615 km) and

its lacunarity images with the gliding-box size r~3, 5 and 7, and the direction of

lacunarity being 135‡. Visual inspection can tell that the lacunarity images at

different scales (gliding-box sizes) are different. For example, a breccia unit can be

seen as bright tones in the central part of the left-half image when r~3 (figure 9(b)).

This bright-tone unit gradually becomes invisible when r~5 (figure 9(c)) and r~7

(figure 9(d )). Such scaling properties of rock unit textures may be important factors

for increasing image classification accuracy due to the complementary nature of

lacunarity images at different scales. In addition, figure 9 can be related to

figure 7(a), which is based on sample images of size 79679 pixels (987.5 m6987.5 m

on the ground). For example, basalt and clastic rocks generally have lower DN

values, while schist and breccia have higher DN values on the lacunarity images, as

displayed in the lacunarity curves (figure 7(a)).

The results from the fractal dimension and lacunarity curves and class

Table 4. Comparison of classification accuracy values for Landsat TM six bands and the
optimal TM and SIR-C L-HH directional lacunarity image combination as shown in figure 8.

Class

Classification accuracy (%)

Landsat TM
six bands

TM and SIR-C L-HH
lacunarity images

Quaternary 23.51 28.08
Basalt 47.64 62.21
Breccia 17.78 28.13
Clastic 25.09 39.37
Granitic 16.87 20.65
Schist 21.24 29.73
Volcanic 36.12 44.09
Metasedimentary 14.58 17.00
Average Accuracy 25.35 33.66
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separability measures (J-M distance) indicate that the SIR-C L-HH image is more

suited for textural analysis of rock units than other SIR-C images and Radarsat

images, and that co-polarization (HH) generally provides more textural information

than cross-polarization (HV) in the study area, which might also be true for other

areas with similar environments. It should be noted that this conclusion is referred

to the textural content of the SIR-C images, rather than image spectral dimension.

Indeed, statistical results based on image spectral dimension (figure 3) do show that

the L-HV image is better than other radar images for rock unit discrimination in

the study area, which also supports the conclusions by Evans et al. (1986) and

Schaber et al. (1997). However, as far as texture is concerned, the relatively strong

HH polarization return of topographic slopes help enhance the texture expression

of rock units.

Compared with the C-band HH polarization SIR-C image, the C-band HH

polarization Radarsat images of both the STDD4 and the EXTH3 have poorer

performance in revealing textural information of the rock units in the study area.

This can be partly attributed to three factors.

1. Radar incidence angle. Singhroy and Saint-Jean (1999) analysed the relief

effects of Radarsat incidence angles in a part of Cape Breton Highlands, Canada,

and concluded that steeper incidence angles (20–27‡) are more suitable for

delineating structural and geomorphic features than shallow incidence angles

(45–49‡), which is partly in accord with our results that the incidence angle (23‡) of

SIR-C is more effective in revealing rock unit textures than the lower incidence

angle Radarsat images in the study area.

2. Radar look direction. There is an approximately 45‡ difference between the

SIR-C look direction and the Radarsat look direction due to the difference between

the Shuttle Endeavor flight path and the Radarsat orbit. The general trend of the

topographic slopes in the study area is in the NW–SE direction which is nearly

Figure 9. SIR-C L-band HH polarization image and its directional lacunarity images.
r, gliding-box size; h, direction of lacunarity measurement.
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perpendicular to the SIR-C radar look directions. Therefore, the major topographic

slopes are more enhanced on the SIR-C images than on Radarsat images, which

may affect the image texture expression of the rock units.

3. Image resampling effects. Roy and Dikshit (1994) concluded that image

resampling may modify the image texture in a complex manner when the image

does not have a homogeneous grey-level structure. In this study, no resampling was

conducted for the SIR-C images, while Radarsat images were resampled using cubic

interpolation during the process of registration with the SIR-C images. It is possible

that resampling process degraded the textural expression of the Radarsat images.

It is believed that the improved classification accuracy from combined Landsat

TM and lacunarity feature images from the SIR-C L-HH image, as compared to

Landsat TM images, can be mainly attributed to the complementary nature of

lacunarity images on different scales, as shown in figure 9, just like multiple spectral

bands can be combined to obtain better classification results when the bands are

poorly correlated. This conclusion is based on three facts: (a) previous studies on

Brodatz textures have shown that lacunarity measures on different scales and in

different directions can improve classification accuracy (Dong 2000a, b); (b) class

separability results (J-M distances) show that the lacunarity image of the L-HH

image can be better than that of the other SIR-C images for rock unit

discrimination; and (c) the optimal image combination includes lacunarity

images of the L-HH image instead of the raw L-HH image, therefore the

contribution of the L-HH image in the classification is mainly from the textural

components of the image, rather than from the raw L-HH image as an ancillary

band.

The relatively low classification accuracy for both the Landsat TM six bands

(bands 1, 2, 3, 4, 5 and 7) and the optimal image combination can be attributed to

the following factors.

(1) The geological map used as reference is stratigraphic rather than lithologic.

It shows rock units identified by age rather than rock type. It is possible that

rock units with different ages may have similar spectral responses in

Landsat TM images because similar rock compositions may appear in

different stratigraphic units. For radar images, the backscatter responses are

related to radar system parameters and target parameters such as dielectric

constant, surface roughness and volume scattering (Fung and Ulaby 1983).

For terrestrial rocks in an arid environment, the density of a rock is the

major factor affecting the dielectric constant, but the dielectric constant

variations do not have substantial influence on radar signal because most

natural rocks have dielectric constants in a narrow range (Farr 1993). These

parameters generally have no direct link to the age of the rock units, even

though they may reflect the age of the rock units in some cases.

(2) The geological map used as reference is for bedrock geology, not for

surficial geology. During field investigation, a geologist often makes logical

deductions as to the rock type buried under layers of unconsolidated

Quaternary deposits. These unconsolidated deposits were treated as invisible

when the geologist makes the map. The unconsolidated deposits are

generally not invisible to an electro-optical sensor like Landsat TM, but can

be invisible to radar imaging systems due to the penetration ability of radar

waves under certain conditions.

(3) Contrary to (2), the geologist may have mapped a rock unit in a certain
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area, but the distribution area of the rock unit in Landsat TM and radar

images can be larger than on the map because of the similarity in the

spectral responses of the rock unit and its weathering products, and possible

penetration abilities of radar waves through thin layers of unconsolidated
Quaternary deposits. In our study, for example, the lava flows form an e-

shaped unit on the geological map, but the TM and radar images all show

that the shape of the units is close to an ellipse.

(4) As shown in the class separability results (figure 8), Landsat TM data

contained much more separable rock unit information than did the

lacunarity images of the SIR-C L-HH image, which means that the

classification accuracy of the TM and SIR-C L-HH lacunarity images

combination mainly depends on the contribution of the Landsat TM
images, even though the incorporation of SIR-C L-HH lacunarity images

can improve the classification accuracy. In other words, if the classification

accuracy from the Landsat TM images is relatively low, the classification

accuracy of the Landsat TM and SIR-C L-HH lacunarity images

combination will not be very high.

5. Conclusions

The results of this study suggest that: (1) the SIR-C L-HH image is more suited
for textural analysis of rock units than other SIR-C images and Radarsat images,

and that co-polarization (HH) generally provides more textural information than

cross-polarization (HV) in the study area; (2) the new grey-scale lacunarity

measures from radar images can reveal more textural information for rock unit

discrimination than other textural measures, and combination of spectral

information from Landsat TM images and textural information obtained through

lacunarity measurement of radar images can improve the classification accuracy of

rock units; and (3) the scaling properties of rock unit textures on radar images can
be revealed by lacunarity measures. The results from Radarsat STDD4 and EXTH3

are not satisfactory for rock unit discrimination in this area. It would be useful to

test other Radarsat imaging modes due to the fact that radar incidence angle may

affect radar image texture. While SIR-C L-HH image outperformed other radar

images for texture analysis of rock units in the study area, SIR-C L-HV image is

more useful for discriminating different rock units than the L-HH image based on

image DN values. It would be interesting to compare multi-polarization SIR-C

images with images from Radarsat-II which is scheduled for launch in 2005 with
C-band horizontal (HH), vertical (VV) and cross (HV and VH) polarizations.

However, pixel-by-pixel classification of multi-polarization radar images may not

be very useful in the study area, as indicated by the class separability analysis

results from the dual-band (L and C) and dual-polarization (HH and HV) SIR-C

images. Due to the lack of L-band, Radarsat-II images may not be better than SIR-

C L-HH images in revealing textures of rock units in similar environments. In the

past years, wavelets have been used as a multi-scale analysis method that separates

information of different scales (Mallat 1989, Ranchin and Wald 1993, Wornell
1995). It would be useful to combine lacunarity with other measures such as wavelet

for better understanding of the scaling properties of rock unit textures. The study

area is in an arid environment with relatively clear rock exposure and no vegetation

cover, which greatly eliminates the influence of soil moisture and vegetation on

radar signals. It is expected that lacunarity analysis, as a general approach to

textural measurement, can be used in a different environment to aid in rock unit
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discrimination as well as other land-cover applications. However, the effectiveness

may vary with the environment because rock unit texture and image signals can be

heavily affected by weathering conditions, vegetation cover and other factors.
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