ARCH 2500

Sampling Designs

Haphazard or Grab Sampling
 • accept whatever we encounter
 • easy
 • introduces uncontrolled bias

Judgmental Sampling
 • use your judgment to choose samples
 • takes advantage of expertise or previous knowledge
 • introduces uncontrolled bias

Probabilistic Sampling
 • removes observer bias
 • allows you to estimate how close sample values are to population values
 • can extrapolate information gained from sample to the population

Simple Random
 • all units in the population have an equal chance of being selected to the sample

Procedure
 • List all items.
 • Assign a number to each item.
 • Decide on a sample size.
 • Randomly draw sample.

Strengths
 • easy
 • very little information needed

Simple Random

Weaknesses
 • may get poor areal coverage
 • doesn’t use prior knowledge
 • requires larger samples
Systematic
* units are chosen at set intervals

Procedure
* Same first three steps as in simple random.
* Determine the sampling interval.
* Randomly draw the first item.
* Take remainder of sample at the fixed interval.

Strengths
* forces even coverage across space
* easy

Weaknesses
* interval may coincide with patterns in data

Stratified
* divide a heterogeneous population into smaller, more homogeneous subsets called strata

Procedures
* Divide sample into sub-populations/strata
* Sample each stratum independently, as in simple random

Strengths
* smaller samples needed

Weaknesses
* requires extensive knowledge about population

Cluster Sampling
* cluster sampling selects clusters of units
* size and shape of unit important

Choosing a Sampling Strategy
* depends on nature of the population
* depends on research goal
* depends on time and money